Athletic Performance Academy – Latest news & updates from Athletic Performance Academy

Deceleration- The Forgotten Factor

With the end of a third lock down in the UK behind us, we haven’t slowed down in our vision to be the Best Tennis S&C Team in the World.  We are committed to a weekly CPD session and last week Konrad gave us an exceptional presentation, the content of which we wanted to share with you! We welcome back APA coach Konrad McKenzie with a weekly guest post.

 

Deceleration – The Forgotten Factor

 

Last week I spoke about what I had taken away from Nick Winkleman’s “Language of coaching”. Today I wanted to write about an insightful paper that I happened to stumble upon. “Efficient deceleration: The forgotten factor in Tennis specific training”. Whilst I am not entirely convinced that it is a “forgotten factor” I acknowledge the provocative title. This paper is excellent and I am excited to share it with you. Today’s topics (based on the paper) are:

 

  • Deceleration components
  • Lower and upper body deceleration
  • Deceleration components explained further
  • Five exercises for you to try

 

As always I am using this as an opportunity to write about what I have learnt in the hope that it directs you towards the paper, rather than simply regurgitating it. So, I implore you to read it through the link here

Four major deceleration components

 

I thought I would mix the order of the paper to enlighten you on 1) what deceleration is 2) Why it is important 3) and what are the rate limiting factors to deceleration performance. Deceleration simply put is the reduction in speed or rate. Sufficient deceleration is pertinent to most field and court sports but in Tennis in particular, deceleration is important in order to set up prior and recover after the shot.

In the upper extremities deceleration occurs in the arms and shoulders after ball contact (e.g serves and groundstrokes). As mentioned deceleration is multifaceted, meaning that it has components for successful performance.

 

“Training acceleration is important to improve athletes speed, however it may not transfer if athlete cannot decelerate faster velocities in appropriate time frames & under control”.

 

Interestingly, the percentage breakdown of total distance covered in respective speed bands during the Australian open years (2012-2014) showed that the majority of movements occurred under 3m/s highlighting the multi-directional explosive actions and sudden braking demands. In the junior game players may experience deceleration speeds of up to -5.2.m/s. This demand will vary for individuals with larger body mass as a result of momentum (Mass x Velocity).

 

 

(Photo credit: Kovacs et al., 2008)

 

I will elaborate on these topics later however, the paper catergorises the major components components of deceleration as:

 

1. Dynamic balance

2. Eccentric strength

3. Power and

4. Reactive strength

 

As scientific thinkers we like to catergorise things into neat little boxes however as we can see by the next picture in the deterministic model of deceleration there are a few factors that influence it. We must not forget the skill component.

 

 

 

(Photo credit: Kovacs et al., 2008)

Lower and upper body decelerations

 

I will now delve a bit further into the deceleration of the lower body and upper body and what is occurring at these regions.

 

“Deceleration is trainable bio motor skill and as such, needs to be included in a well-rounded tennis specific training program”

 

As mentioned above training acceleration should not be neglected however, the paper suggests that athletes need to able to decelerate the faster velocities in the appropriate time frames in order to be effective. Check out the figure below, the athlete pictured needs the strength (along with balance and coordination) to accelerate into the forehand and decelerate immediately after ball contact.

 

(Photo credit: Kovacs et al., 2008)

 

Also check out this world-class rally where this is mentioned further. Something else to note is that high braking forces during the “penultimate step” can increase the risk for injury (Dos santos et al.,2018) if change of direction technique and strength levels are poor.

 

 

The body uses eccentric contractions after ball contact in virtually all serves and ground strokes. These contractions are of vital importance, virtually all strokes require deceleration of the upper extremity within the kinetic chain. High powered movements such as the serve require high levels of strength around the scapula and shoulder region, due to the large forces generated by the internal rotators such as the Latissimus Dorsi and the pectoralis Major. These muscles accelerate the arm forward for an explosive ball contact, all this is happening with an arm elevation of the arm (approx. 90-100°).

 

After ball contact an increasing demand is placed on the Scapula-thoracic stabilisers (Infraspinatus, Teres major, Teres minor, serratus anterior, trapezius and Rhomboids) as they perform eccentric work to decelerate the arm as it continues to internally rotate. Interestingly Fleiseg et al reported forces of up to 1 x bodyweight through the Gleno-humeral joint. Kovacs argues that players lack the vital deceleration capacities in the upper body which amplifies their risk of injury.

 

Deceleration components of deceleration explained further  

 

This article goes into quite a bit of depth regarding the four components, I will touch on these briefly to avoid making this blog too long.

 

Power and reactive strength

 

Power is said to directly translate into greater racket head speed and ball velocity. Increased power qualities is said to improve the athletes ability to brake via the restrain mechanism. The restrain mechanism also serves to protect the structures of the hips knees and ankles. Reactive strength is enhanced as a result of training due to the adaptations in the sensorimotor system. From a neuromuscular perspective the stretch reflex is initiated during the eccentric (landing) resulting in greater motor unit contraction during the subsequent concentric action. A longer term adaptation to Plyometric training is the desensitization of the Golgi Tendon Organs (GTO) which allows the elastic component of the muscle to go through a greater stretch. In terms of performance this results in an increase in power and speed.

 

Eccentric Strength

 

Training an eccentric contraction requires selecting exercises which lengthen muscles under tension. An example eccentric action in tennis would be in the loading phase in a shot or the penultimate step. Tennis movement places an asymmetrical load on the body and it is argued that these uneven loading patterns are trained eccentrically. A lack of eccentric strength in the lower and upper extremities heightens the risk of injury. The paper has training recommendations for this if you wish to delve deeper but I was particularly interested in this:

 

“Length–tension curves for single fibres (sarcomeres), whole muscle, and single joints all have different shapes. As the result of these different shapes, it is vital for the athlete to be trained at a variety of angles and torques to stimulate adaptations in as many muscle fibres as possible to capture the greatest effect on altering the length–tension relationships specifically during eccentric dominant movements.”

 

Dynamic balance

 

Firstly dynamic balance is the ability for an athlete to maintain a stable centre of gravity while the athlete is moving. A well balanced athlete allows to successfully use the segmental summation of muscular forces and movements through the kinetic chain (Kibler, 1994). Efficient energy transfer from the ground up through the kinetic chain will result in more efficient and powerful tennis stroke. I’ll assume that the paper accounts for Rhythm, timing and proper contact with the ball. In a recent webinar that I took part in, the word “confident” was used as opposed to “Certain” which, in my opinion, encapsulates the complexity in human performance and Tennis. By enhancing dynamic balance we allow for proper intermuscular coordination reducing the chances of compensatory movement patterns. Whilst experts do not agree on athlete specific balance, researchers suggest that changes in both sensory and motor systems enhance balance (Bressel, 2007).

5 exercises for you to try

 

The paper has some exercises which are used to enhance the eccentric and rate of force development capabilities around the shoulder girdle and in the lower body (Hip extensors, Glutes and hamstring muscles). I will add in some exercises outside of the paper which I also found interesting.

 

  • 90/90 shoulder prone plyometric drop

See Video example HERE

 

  • Reverse catch deceleration

See Video example HERE

 

  • Medball side lying drop catch

 

 

  • Split Stance RDL

 

 

  • Lateral hurdle run with hold

 

 

Tennis is a wonderful game which challenges fine motor skills, inter and intra muscular coordination. Preparation for the Tennis athlete is by no means a simple task if we appreciate the competing demands of the sport. I hope you have enjoyed, please read the paper for a more in depth discussion.

 

 

Thanks for reading guys,

Konrad McKenzie

Strength and Conditioning coach.

Liked This Blog?

You might like other blogs on this topic from APA:

APA review of the Middlesex Students S&C conference 2014

The Dubious Rise of the Corrective Exercise ”Pseudo-Physio” Posing as a Trainer- My thoughts

as well as two recommended articles:

This article on weak Glutes during Squatting

And this one on Exercise Modifications 

 

Do you feel that this would be a perfect time to work on the weak links that you have been avoiding? The things that you know you should be doing that you keep putting off? Would you like us to help you with movement screening and an injury prevention program? Then click on the link below and let us help you!

? TRAIN WITH APA ?

Aspiring Pro Training Support Packages

 

 

Follow me on instagram @konrad_mcken

Follow Daz on instagram @apacoachdaz

 

Remember:
  • If you’re not subscribed yet, click here to get free email updates, so we can stay in touch.
  • Share this post using the buttons on the top and bottom of the post. As one of this blog’s first readers, I’m not just hoping you’ll tell your friends about it. I’m counting on it.
  • Leave a comment, telling me where you’re struggling and how I can help

 

Since you’re here…
…we have a small favor to ask.  APA aim to bring you compelling content from the world of sports science and coaching.  We are devoted to making athletes fitter, faster and stronger so they can excel in sport. Please take a moment to share the articles on social media, engage the authors with questions and comments below, and link to articles when appropriate if you have a blog or participate on forums of related topics. — APA TEAM

 

=> Follow us on Facebook

=> Follow us on Instagram

=> Follow us on Twitter

Pacey Performance Podcast REVIEW- Episode 348 Keith Baar – PART 2

This blog is a review of the Pacey Performance Podcast Episode 348 – Keith Baar

Keith Baar

Research Gate

Background: 

Keith Baar

 

Keith is a Professor in the Department of Physiology and Membrane Biology at the University of California Davis, and Head of the Functional Molecular Biology Lab.  The goal of the laboratory is to understand the molecular determinants of musculoskeletal development and the role of exercise in improving health and performance.

Keith completed his PhD at the University of Illinois looking at the mammalian target of rapamycin complex 1 (mTORC1) in the maintenance of muscle mass.

 

Discussion topics:

 

Daz comment – here is quick overview on the role of the tendon and the process of remodeling, before we dive into Keith’s podcast talk with Pacey Performance.

 

  • Tendons have the ability to store and release energy like a spring, and to be stiff with standing loading.  These attributes allow efficient running and jumping.
  • Tendons need tension to adapt and cartilage need compression.
  • When a tendon is loaded appropriately it adapts by strengthening, and becomes stronger by increasing ‘stiffness‘, NOT by becoming thicker.
  • It is also possible to relatively unload a tendon, either when returning from injury or in the case of athletes who vary from being relatively unloaded, having appropriate load, to excessive unloaded.
  • The unloaded tendon becomes stress shielded, whereby the superficial portion of tendon bares too much load and the deep portion too little.
  • The stress shielded tendon under normal or even excessive load can become reactive.  The reactive tendon will try to ‘thicken‘ to reduce stress.

 

Taken from Andrew Walker, Physical Therapist.  You can see the full video later on in the blog

 

Isometric training for train the tendon, where’s your head up with that?

So the first thing is anytime you load the tendon, isometric, eccentric, concentric muscle work, the tendon gets the same signal if the tendon is happy. If it’s a healthy tendon, it doesn’t matter how you train it. The muscle, the genetic response varies based on the type of load, the tendon it doesn’t vary. So all that means is that you could do any of them on a healthy tendon. And so that’s the important thing. If your tendon is perfectly healthy, no problems at all, you can train however you want. You can do lots of ballistic movements. You can do whatever, whatever isometric, eccentric, concentric movements you want.

 

 

The difference appears when you get some sort of injury to the tendon because when you have an injury to the tendon, now what you get is that section of the tendon doesn’t get loaded when we do normal dynamic loading. We have a paper that should be coming out in the next little bit where my PhD student Danielle has put a biopsy punch to put a hole in the middle of a rat patellar tendon. So right in the middle, just like you would see in a lot of, kind of chronic patellar tendinopathy, it’s a central cord tendon injury right up near the patella. And then what she’s done is we’ve waited 15 days for that to form this tendinopathic tissue. And interestingly, the genes that we see expressed in that tendinopathic tissue are the exact same ones that we see in human tendinopathic tendons.  So the rat tendon is modeling that human tendinopathy.

 

Isometric vs. Dynamic Muscle Contractions for Tendon re-modelling

When we then do either four isometric loads, and these are overcoming isometrics that are held for 30 seconds. So they’re very long isometrics with two minutes of rest in between, or we do the exact same time under tension matched and length of time of loading matched using dynamic movements. So they’re one third of a second and we give one third of a second dynamic contractions to the muscle or to the tendon. When we take out that tendon, we look at the genes that are expressed…………

 

The one that did the isometric loading has the expression of tendon.

 

So we see tendon specific markers go up. We see collagen Type 1 go up. In the one that had the dynamic contractions on it, so it’s dynamically loaded and it’s a central core tendinopathy, we actually see genes going up that are more similar to what you would see in fibre cartilage (compression like genes);  because as you pull it really quickly, what we get is we get stress shielding around the injured area.

 

Figure – Stress shielding key concept to understand why partial damage to the injured tendon can prevent rupture. How do you get load through the area though? Tension (not compression which creates cartilage).

 

We get that stress shielding, because the tendon it’s what we call an ISO-volumetric tissue. That means as I stretch it, I’ve made it longer. So in order to make it longer and keep the same volume, it has to get skinnier. So as I pull it up, if there’s a hole in the middle, the sides are then compressing the middle. And if there’s no tensional load, because it’s been disconnected from the tension above and below, now you’ve only got a compressive force. You’d no longer have a tensional force. So the reason that isometrics become important in that situation is because as I pull and I hold at that longer, skinnier length, what’s happening is the sides of the tendon where it’s still healthy are relaxing, just like we said, with creep or with stress relaxation.

 

And now what happens is the whole tendon becomes less stiff because I’m holding it there and there’s a decrease in the tension within the tendon. And as it becomes less stiff, I actually get tensional load through the injured area of the tissue. And when it feels that tensional load, now it knows, oh, I should be a tendon and I should express these genes and it starts making those genes. But when we just dynamically load and we do these faster movements, we don’t see that. And so that’s when it becomes important to use isometrics for a tendon. You can use, and I know track athletes who use what they call isometrics for very short, like 0.2 second isometrics, where they’re just going to go up as hard as they can hold it and drop. For me that, that doesn’t really count as an isometric because yes, the joint hasn’t necessarily changed its length, but the muscle has shortened because it’s taken up the tension within the tendon.

 

 

So there’s beautiful work out of the University of Calgary that shows that if you do an isometric load, which means that you keep the joint at the same angle, the muscle is shortening, the tendon is lengthened. And that makes sense to most of us because yeah, you can see if I go and I isometrically load my bicep, my bicep becomes bigger. That’s what a bodybuilder does. Isometric and they flex their biceps. Well, if it’s happening that way, that means that the muscle is shortening, even though the elbow joints in our bodybuilder example, isn’t shortening. So you’ve got a shortening of the muscles. So it’s, the muscle is still contracting concentrically, but the joint isn’t changing. So the really short isometrics as people call them, aren’t necessarily isometrics in the way that we’re thinking of muscle and tendon.

 

Long isometrics to induce stress relaxation of tendons

 

What I’m thinking of when I say isometrics are long isometrics, and I use them as a way to induce what’s called stress relaxation, which is basically as you pull on the tendon, the strongest parts of the tendon relax, and you see that as a decrease in the tension within the tendon. And that decrease in tension within the tendon gets to its low point around 30 seconds. So about 30 seconds of an isometric hold on a tendon, the tendon’s tension will have gone down about 45%. So that the tendon will have stretched and the tension within there has gone down a huge amount. If I go all the way up to three minutes, it won’t have gone down much more than another 5%. That’s why I use that 30 seconds.

 

 

When you’re doing a 10 second isometric, you’re going to get some of that, but it’s not going to be as complete a relaxation. You can get other things that are really important. People use them to overcome, like when people have issues with where they feel like they can’t increase the weight and they’re a strength athlete, they can use isometrics as a way to kind of take advantage of the fact that we’re stronger in the isometric than we are in the concentric. And now we can slowly overcome and build through stopping points within our progression. So people can use them for a whole bunch of other things, but for the tendon component, we’re using it for that stress relaxation at that 30 second time point.

 

What does overcoming mean in terms of an example of an exercise and what alternatives are there to overcoming?

 

Overcoming isometrics

”Perfect, so what a lot of people do is the classic leg extension machine, which I know people, those are the machines that people have to go and find them on eBay because nobody’s used them in 40 years. But a lot of people just take it, put the weight at the bottom, kick out as hard as they can, and basically hold it for 30 seconds. What I tend to do is I tend to give people a yoga strap. I gave them a handheld dynamometer (there are some that are sold from San Diego that are like a hundred bucks). So it’s a really good tool because basically now I can have you kick out against that yoga strap onto that handheld dynamometer, it’ll go to your phone and it’ll show you how hard you’re pushing for 30 seconds and it’ll time you for 30 seconds and you just keep it that way. Or you can do like a hamstring curl. And all it is, is that you’re in a position, you are trying to overcome the weight and you’re not, and the weight is not yielding. So basically the weight is more than you could lift. And as a result, an overcoming isometric is you’re always trying to overcome the weight, but it’s never possible, you’re not strong enough to do it. And usually you do it from the longest position of the muscle, so from the greatest muscle length.

 

So if you’re thinking of a hamstring curl, it’s a straight leg position where you’re about to pull in. If you’re doing a leg extension, the knee is at 70 ish percent and you’re trying to push it out as hard as you can. And so that’s the overcoming isometric.

 

Yielding isometrics

 

The yielding isometric what we’ll do with this one is we’ll push up a weight on leg press with two feet, and it’s a weight that you can lift with two, but you can’t lift with one and it’s really heavy for one. And then you take away one and you’re just trying to hold it there and you’re not trying to yield.

 

Technique: Low Jerk isometric

 

Okay, so you’re basically, like with most of our isometrics when we’re trying to get tendon and muscle working optimally is that we found that if you can get to high force without a lot of jerk, which means that you’re not moving the weight abruptly. So when you’re doing an overcoming isometric, you don’t kick out as hard as you can immediately. What you’re going to do is you’re going to develop force over about a two second period where you’re slowly raising force. You’re going to hold that maximum force and you’re going to let it off easily.

 

If you’re doing that, that’s what we call a low jerk isometric and that’s really what we’re looking for isometrics. We want them to be in a long muscle length because it seems like, and again, I have a PhD student who’s going to specifically look at what the muscle length should be during these isometrics for optimal tendon health, but from some of the clinical work that we’ve done, we’ve found that a longer muscle length actually has a better outcome for both the muscle and the tendon. And again, you just think of it as that’s usually where when you’re at a longer muscle length that means that the stretch on the system is going to be the greatest.”

 

Is there any differences in terms of adaptation and muscle tendon in the two types of isometrics that you just described?

”Nobody’s done the experiments yet, to be honest. So we’re early days with this, as far as experimentally, how these types of loads actually affect both the muscle and the tendon. The tendon, what we’re focusing on is this stress relaxation component, but it could be that there’s other things happening there because the other thing that we’re doing is we’re actually producing a very high force movement, or high force contraction with the muscle. And that’s going to stimulate the matrix of the muscle as well as the muscle to get stronger.

 

One of the reasons that we use heavy strength training in our training, for every single athlete that we work with, is because that heavy strength training is going to make the muscle stronger. And if you go back to the beginning, we said that injury to the muscle happens when the tendon is stiffer than the muscle is strong. So if I make the muscle stronger, now the likelihood of me getting a muscle pull is going to go down. And you saw that, you know, last year after the Champions League final, when they showed all these pictures of the guys from Bayern Munich, and they were all these big hulking people. A lot of the reasons that you’re doing strength training is to make sure that the muscle is stronger than the tendon is stiff.

 

You talked about fast and slow training and the benefits of both, why it include both. Would you mind just touching on that for us? 

”Yeah, sure. So what we’ve got is that, as I said, a tendon is what we call a variable mechanical tissue. That means on the muscle end, it’s stretchy and on the bone end it’s stiff. And the way that we maintain that muscle and compliance is through our activity. And we know this because we did a study in rodents where we actually cut the nerve to the muscle, so the muscle couldn’t contract anymore. So that’s the same thing that would happen if you put yourself in a boot or if you had a lot of time off or you’re sitting for a long time. And then what we found is that, whereas on a normal animal, we see the muscle end of the tendon’s really compliant and the bone end’s really stiff, after we cut the nerve and we let them not be able to load it for five weeks, the muscle end of the tendon was just as stiff as the bone end of the tendon.

 

And so what we think is happening there is that there’s some beautiful work by Talia Voke that showed that if you look at the muscle end of the tendon, you have fewer cross-links than the bone end of the tendon. And so what we think is happening is that as you load with a heavy weight, and when we say a heavy weight, it’s not about the heavy weight, it’s about the slowness of the movement. Again, when we’re talking to athletic trainers they are always like , ”we have to do it slow lengthening contractions because that fixes tendinopathy.”. It’s not about the slow lengthening contractions, it’s about the slow. And when we do a heavy concentric work, that by definition, a heavier weight force velocity relationship means you’re doing it slower.

 

So we want a heavy weight for two reasons. One is it’s going to make the muscle stronger. The second reason is that it’s going to allow us to break cross-links within the muscle end of the tendon, because as you move more slowly, because it’s a viscoelastic tissue as we talked about before, that means that the collagen molecules within the tendon are going to actually slide past each other. And it might not be individual molecules. It might be fascicles because the interfascicular area’s really active within a tendon. And so a tendon has this really interesting organization where it goes from fibrils to fibres, to fascicles to the whole tendon and those fascicles can slide past each other as well as some of the fibres sliding. And when that happens, we break cross-links between the adjacent fibres, fibrils or fasicles. And as we break cross-links, the cross-links make it stiffer, so when we break them they becomes less stiff.

 

So we do heavy, slow training, what we’re doing is we’re getting the sliding of the collagen molecules at the muscle end of the tendon. That’s going to allow us to break cross-links at the muscle end of the tendon. That means the muscle end of the tendon is going to be a little bit stiffer. Doesn’t mean the tendon or the muscle or the muscle tendon unit is going to be less stiff because as you’re doing the heavy strength training, you’re also giving a stimulus to the matrix and the muscle that’s going to make that stiffer. So overall, if we took out the whole muscle and tendon, you might actually see an increase in stiffness, but the muscle end of the tendon’s going to decrease in stiffness just a little bit, and it’s not necessarily enough to decrease performance, but it will potentially impact that.

 

Now, when we do fast training, what’s happening is because it’s a viscoelastic tissue, the collagen in the tendon is stiffer. So instead of having that sliding because the collagen molecules are working like individual molecules, what you get is that as you move faster and faster, the collagen molecules work together as a sheet instead of as individual molecules. And when they’re working together as a sheet, you’re not sliding them past each other, so you’re not breaking any cross-links. When we do any type of exercise, concentric, eccentric, fast, slow doesn’t matter, you get an increase in the enzyme that makes cross-links. So when you do slow exercise, you break cross-links and then you start making new ones, but you don’t make as many as you’ve broken, so your overall stiffness over time will decrease.

 

When you’re doing really fast movements on a low weight, now what you’re doing is you’re not breaking cross-links during the exercise, and then you’re adding more cross-links afterwards, so over time you’re going to get stiffer. Okay. And the other thing that happens, because when we’re doing fast movements, by definition, those fast movements are against the lighter weight and that means that our muscle, if that’s the only thing it’s exposed to is going to get less strong over time. So now we’ve got a stimulus by doing these fast, fast movements where we’re increasing stiffness of the tendon, decreasing the strength of the muscle. Now we’re going to get into a point where the muscle is not as strong as the tendon is stiff and that’s when we get our muscle pulls.

 

That’s why when you get into the Olympics, if they happen as scheduled in a hundred or so days, when we get to the track and field in the men’s 200, 400, you’re going to see these guys pulling up with hamstring problems, pulls, because basically they’ve been trying to go as fast as possible so that they can maximize their performance for this one opportunity. And then they get a little bit tired. They over stride a little bit, they hit the ground and the muscle isn’t strong enough to stretch that tendon. And so instead of the tendon stretching, now the muscle stretches when it’s at full length and that’s when we get those hamstring pulls.

 

And again, it’s going to happen in the men’s because the women, because of the effects of estrogen, estrogen can directly inhibit that enzyme, which adds cross-links. That’s why they get more lax in the knee and fewer muscle pulls. So we wouldn’t expect it to happen as often in the women’s 200, 400, but we’d expect it to happen more often in the mens.”

 

Another thing you spoke about was the multiple hits per day. Is that something that you do in terms of encouraging people to do that? And is there a time limit or maximum time, minimum time that you’d recommend?

”Yeah, so we definitely do that when we’re coming back from injury.  The research comes back to some things that we did in our little engineered ligaments, and that’s translated really nicely into the human recovery work that we’ve been doing. And so what we found was that we’ve got a minimal effective dose of loading, which means the tendon stops feeling load after about 10 minutes. So the cells, because it’s like the tendon cells, or maybe a 13 year old kid, because they’ll listen to you for a little while and then they stop listening to you entirely. And it takes them a while before they’re going to listen to you again. So they’re more like 13 year olds who still listen a little bit, 16 year old, doesn’t listen at all. So now that 13 year old is going to listen to you our tendon cells for about 10 minutes of activity. And then after that, you can continue to be active, but it’s going to not pay any attention.

 

 

So it got all the signal it is going to get from that 10 minutes. And then what we showed is it takes about six to eight hours to recover that ability to signal again. And so, yeah, you can do two bouts or three bouts a day if you’re in recovery and you’re really dead set on recovering as fast as possible. What we do is a morning session, which is five to 10 minutes of activity, and it could just be range of motion activity, where you’re just getting basic load through the tendon. We’re going to wait six to eight hours, so around noon then, we’re going to do another 10 minutes of activities, wait six to eight hours at night before bed. And all of those three bouts are going to give you that minimal effective dose, which is going to give you the signal to adapt as quickly as possible without giving you all of the extra mechanical load that comes with longer periods of training.

 

And then what we do is we go from those three bouts, we’re going to progressively increase the length of one of those bouts because we have to increase cardiovascular fitness and muscular fitness, so endurance capabilities. And as we do that, we’re going to keep the initial two other bouts as protective for the connective tissue and then as we progressively increase the length of that main session, what we’re going to do is we’re going to then slowly go into a two session a day period where one is a protective session for the connective tissue. The other is a session for tactical, for cardiovascular, for muscular fitness. As far as healthy individuals training, yes, you can do that as well. If your sport is really about performance, about really high intensity, really quick movements, you can do short periods of high intensity movements that are going to last a very short period of time between, you know, even just a 10 minute session is going to have enough to give you the signal that you need.

 

So what you could do is you can easily, say you’re a sprinter and you need to be as explosive as humanly possible. Now what you’re going to do is you’re going to do one really explosive session in the morning, 10 minutes, bang, you’re done, that’s it, we’re done. Then you’re going to come back and you can do your track work in the afternoon. It’s going to be a little bit more, but now that’s six to eight hours later, the cells are able respond again, but we’ve had two sessions instead of just one big session. And we do see that that does provide an extra stimulus for adaptation.”

 

The importance of nutrition. I think I found this fascinating, importance of nutrition in the return to play process based on your work and your thoughts, can you give us a bit of an overview of that?

”So there what we’ve seen is that and this again comes back to our engineered ligament work, where we noticed that when we increased the amount of proline and we increased the ascorbic acid in the media of our cells, they actually got a whole lot stronger, the ligaments did. And so we, I just went and said, okay, what’s a food that’s rich in proline and glycine? And of course, collagen or gelatin comes up. And so we did the first study on this in humans with the Australian Institute of Sport. And what we showed is that when you had 15 grams of gelatin an hour before you did six minutes of jump-rope, again, minimal effective dose of loading to load the bone to give us a stimulus for adaptation. What we found is that when we did that every six hours, we saw an increase in collagen synthesis just by doing jump rope every six hours.  And then we saw a further increase when we had the 15 grams of gelatin.

 

So it does look like that, the collagen synthesis component can be stimulated by collagen or hydrolyzed collagen or gelatin. We’ve just finished the study that we’re trying to get published. We’re in the second revision in the paper and what we’ve done there is we’ve given hydrolyzed collagen or a placebo control to our American football team here at the University of California, Davis when they were doing their strength training. So this is the off season, they’re doing heavy strength training. And like we’ve said, heavy strength training actually decreases rate of force development because all you’re doing is moving slow. And so even when you try and include some ballistic movements, that’s still a dominant thing when you lift really heavy for a number of days.

 

But when we included the gelatin in there, what we saw was that we actually didn’t see as big a decrease in rate of force development. And the rate of force development recovered much, much faster to the point where at the end of the study, the group that was in the hydrolyzed collagen group had actually improved performance as far as their eccentric rate of force development for counter movement jump. For a lot of these performance measures, their maximum isometric strength, they actually saw an increase in their rate of force development there as well. So you can see a performance benefit potentially to the collagen as well.

 

Caffeine can inhibit collagen synthesis

 

One of the things we’re working on right now- we went back to some of the old research we had done and sure enough we’d found that caffeine can inhibit collagen synthesis. So what we had been telling people to do is because you’re taking the collagen an hour before you do your training, you can just put it to your pre-workout supplement, which often has, is a big dose of caffeine and it about three mgs per kg. But it seems like that caffeine potentially could be inhibiting collagen synthesis. And so I don’t know if it’s enough where that caffeine is actually going to circulate enough to have that effect in vivo, but at least in vitro studies, we can show a dose dependent decrease in collagen synthesis with caffeine. And our engineered ligaments are actually, you know, some of the work that I did a few years ago showed that they’re actually about half as strong as the ligaments that were grown without caffeine.

 

So now what we’re doing is we’re maybe shifting how we’re doing the pre-workout supplement. So we’re trying not to give it directly with caffeine, because again, we’re trying to target the nutrition to where we’re going to be using it. So we take it an hour before we do the loading. That’s a way that you can kind of deliver it into the areas that are going to be loaded, where you want the extra glycine and proline and all of these collagen essential amino acids to be. And so we don’t necessarily want to have caffeine together with it at that time, because we don’t want them going together to the tendon because we’re going to see less collagen synthesis than if it was just the collagen alone, or even if, you know, the caffeine seems to be inhibiting it below baseline levels.”

 

The principles of rehabbing a tendon, is that different for different tendons?

”It’s a great question. We haven’t seen any difference between the tendons we’ve looked at. We’ve actually even used a similar protocol to regenerate the patellofemoral cartilage. So we had an NBA basketball player who had eroded the patellofemoral cartilage to the point where there was obvious MRI data that said that there wasn’t much left, but we were able to regenerate that pretty fully using kind of a compression, relaxation, compression, relaxation, an hour after we had given some hydrolyzed collagen and vitamin C. And so it’s a way that if you can get the load through the tissue and you can get the nutrient in there and you can kind of get it to flow in through so the cells are getting the stimulus they need (in the case of cartilage it’s compression, in the case of tendon is tension) and then you’re giving that in association with providing the amino necessary, you can see increases in collagen synthesis, whether it’s cartilage, whether we’ve seen it in bone, and we’ve seen it in tendon as well. And it doesn’t seem to matter which tendon we’re looking at.”

 

Top 5 Take Away Points:

 

  1. Tendons need tension to adapt and cartilage need compression.
  2. Use Long isometrics to induce stress relaxation of tendons
  3. Use low jerk isometrics to develop force over about a two second period where you’re slowly raising force
  4. There is a place for fast and slow training in the programme
  5. Minimum effective dose- 3×10 mins for tendon remodeling seems to be optimal.

 

Want more info on the stuff we have spoken about?  Be sure to visit:

 

Twitter:

@Musclescience

You may also like from PPP:

 

Episode 372 Jeremy Sheppard & Dana Agar Newman

Episode 367 Gareth Sandford

Episode 362 Matt Van Dyke

Episode 361 John Wagle

Episode 359 Damien Harper

Episode 348 Keith Barr

Episode 331 Danny Lum

Episode 298 PJ Vazel

Episode 297 Cam Jose

Episode 295 Jonas Dodoo

Episode 292 Loren Landow

Episode 286 Stu McMillan

Episode 272 Hakan Anderrson

Episode 227, 55 JB Morin

Episode 217, 51 Derek Evely

Episode 212 Boo Schexnayder

Episode 207, 3 Mike Young

Episode 204, 64 James Wild

Episode 192 Sprint Masterclass

Episode 183 Derek Hansen

Episode 175 Jason Hettler

Episode 87 Dan Pfaff

Episode 55 Jonas Dodoo

Episode 15 Carl Valle

 

Hope you have found this article useful.

 

Remember:

  • If you’re not subscribed yet, click here to get free email updates, so we can stay in touch.
  • Share this post using the buttons on the top and bottom of the post. As one of this blog’s first readers, I’m not just hoping you’ll tell your friends about it. I’m counting on it.
  • Leave a comment, telling me where you’re struggling and how I can help

 

Since you’re here…
…we have a small favor to ask.  APA aim to bring you compelling content from the world of sports science and coaching.  We are devoted to making athletes fitter, faster and stronger so they can excel in sport. Please take a moment to share the articles on social media, engage the authors with questions and comments below, and link to articles when appropriate if you have a blog or participate on forums of related topics. — APA TEAM

 

=> Follow us on Facebook

=> Follow us on Instagram

=> Follow us on Twitter

Pacey Performance Podcast REVIEW- Episode 348 Keith Baar – PART 1

This blog is a review of the Pacey Performance Podcast Episode 348 – Keith Baar

Keith Baar

Research Gate

Background: 

Keith Baar

 

Keith is a Professor in the Department of Physiology and Membrane Biology at the University of California Davis, and Head of the Functional Molecular Biology Lab.  The goal of the laboratory is to understand the molecular determinants of musculoskeletal development and the role of exercise in improving health and performance.

 

Keith completed his PhD at the University of Illinois looking at the mammalian target of rapamycin complex 1 (mTORC1) in the maintenance of muscle mass.

 

Discussion topics:

 

So in terms of injury rates, why are injury rates still on the rise?

 

”Well, the first reason is that because we get paid on performance (athletic trainers, strength coaches, all of these performance people). And a lot of performance is down to maximizing properties of the musculoskeletal system that actually puts you at an increased risk for injury.

 

And so what is the delicacy and what’s the real art of performance science is to balance performance against injury rate. Because as far as I’m concerned, I’m going to shift more towards injury rate. I’m going to decrease injury rate because if I decrease injury rate, my athletes are going to have more time in practice. They’re going to be able to have more sessions. They’re going to be trained more frequently. And over time they will progressively get better.

 

The problem is many coaches and performance directors don’t have that long view because their job is going to be determined in the next six months. So if they don’t win it now, they’re not going to be there long enough to have the opportunity to see the benefits of what they put in place. And so a lot of times what we’re doing is we’re making short-term decisions when we really need to look at long-term progression.

 

While we still have this system where everybody is judged and the coach is going to bring in his own performance team and all of these things, we’re going to still have this cycle.

 

Could you give us a overview about the role of the tendon, the function and how they actually adapt, if that’s alright?

 

”Sure. So I think the best thing to do is to start off by looking at tendons and ligaments, because these two things are often grouped together. And the reason that they’re grouped together is they’re structurally very similar. They’re at least 70% type I collagen and that collagen is supposed to be aligned along the line of force. In a ligament, you’ve got more than one direction of force sometimes, so you get maybe a little bit different alignment than you would do in a tendon.

 

And what we’ve got in these structures are collagen protein, and that collagen protein is cross-linked together. And that cross-linking is going to alter the stiffness of the structure. So the stiffness of your tendons and ligaments is down to how much collagen you have, what direction the collagen is going and how cross-linked the collagen is.

 

 

Ligaments

 

And so when you have a ligament, what a ligament’s job is to do is to keep a joint from being lax. So is to keep a joint really sturdy. And so the stiffer your ligaments are the better because you don’t want movement within the joint. An example is if we increase the laxity of the knee joint so that there’s 1.3 millimeters of extra give in the ACL, we have a fourfold increase in the rate of ACL rupture.

 

So anything that’s going to give us small changes in ligament stiffness, or laxity of the joint is going to be bad. And so a ligament, we want it to be as stiff as possible. And that’s because it’s going to connect two bones together and the two bones are going to be super stiff.

 

Tendons

 

If we look at a tendon, the real difference between a tendon and a ligament is  a very basic property. A tendon is attaching a muscle to a bone. And so that means on one end, it’s attaching to something very compliant or stretchy. And on the other end, it’s got something stiff. And if you were to give an engineer a job of attaching something that’s really stretchy to something that’s really stiff and hard, they would have night sweats because this is the exact thing that is the most difficult thing to do as far as engineering that structure. And so the tendon is  a unique tissue in the fact that on one end it’s stretchy and on the other end, it’s stiff. And so it’s a variable mechanical tissue. That means that the stiffer your tendon is not always the best option, whereas in the stiffer the ligament, the best option, always stiffer; stiffness is better.

 

Tendon, it’s a little bit different because it has to connect to a compliant muscle.

 

If it’s too stiff, if it’s stiffer than the muscle is strong, that’s when we get non-contact muscle pulls.

 

If we just compare female athletes to male athletes, because we said that as stiff as possible is great for the ligament. Well, we know that women playing the same sport have a four to eight times higher rate of ACL rupture. That’s telling us something about the laxity of the ligaments, that they’re less stiff than the men. But they also have 80% fewer non-contact muscle pulls. So what that’s telling us is that when the stiffness is low, we get ACL ruptures. When the stiffness is low, we get fewer muscle pulls.

 

In contrast, when the stiffness is high, fewer ACL, fewer ligament problems and more muscle pulls. And obviously as a strength or a performance person or a manager, you want to have muscle pulls over ACLs every day. But at the same time, you don’t, you also want to try and eliminate those muscle pulls as much as you can. And that’s where the intricacies of tendons and ligaments and this muscle tendon unit science really take off because to train such that you’ve got stiff tissues for your ligaments, but you can modulate the tendon’s stiffness by using your exercise. That’s really where  you’re making your living if you’re a performance or a strength coach.”

 

What’s the role of the tendon in dynamic performance such as sprinting and jumping?

 

”My definition of a tendon is it’s something that’s there to protect the muscle from injury. From a standpoint of a performance person, it’s there to transmit force as quickly as possible. Okay, so the stiffer a tendon is, the faster I can transmit the force being produced by the muscle to the bone, and that’s going to increase performance.

 

So really what I want to do with my tendons for performance is I want to have them as stiff as possible. And the reason for that is that if you think of a weight on your desk and you attach a rubber band or elastic band or a stretchy band, and you pull on the stretchy band, what’s going to happen is it’s going to stretch and the weight’s not going to move. And that’s really what would happen if you have hyper-laxity. If you have really stretchy tendons, you pull on that tendon and the bone, which is our weight on our desk, doesn’t move.

 

 

If you now switch that to a rope that’s a braided material, as you pull on it, it’s still going to stretch a little bit, but because it’s a lot stiffer than the stretchy band, now as you pull on it, it stretches a little bit, and then the weight moves. But if I instead have a steel rod there, as soon as I pull on the steel rod, now that bone or that weight on my desk is going to move immediately. That’s basically what we talk about when we talk about rate of force development. When we talk about rate of force development, what we’re saying is how quickly can we get from the message from your brain, to the contraction of the muscle, to the movement of the bone. And that last bit, the contraction of the muscle to the movement of the bone, that’s where your tendon stiffness comes in.

 

If you want to perform at your best, ideally, you want that tendon to be as stiff as possible. But again, the way that you do that is you’re going to increase stiffness. And then the stiffness of the tendon, if it gets stiffer than the muscle is strong you’re going to have muscle injury. So this is where we’re trying to balance these two things out. We’re trying to balance the performance side, where the higher the stiffness, the better for performance with the potential for injury side, which is if my tendon is stiffer than my muscle is strong, I’m going to get a non-contact muscle pull. And so that’s really where our performance people or performance scientists are earning their money.

 

So how do we know as sports performance practitioners, if we’re getting that balance right or is it before we get the injury idea?

 

”So again, what you would do is if you’re at a max performance sport, like you’re a track and field, and you can do everything where you just have to be your best for, you know, for that one event, then what you do is you practice that. And that means in a non world championship, non Olympic championship year, you actually push yourself to the point where you get a non-contact muscle pull. Because that what that’s done is that’s told you, okay, in this individual, what is my ratio of fast movements to slow movements or heavy movements that is going to optimize their performance? And then where am I going to get to that point where if I pushed it too far, I’m going to get a pull? Now, once I know that, I can go back and I can program knowing that in the past, this is where we’ve been. Once we get up towards that level, now I can manipulate training to keep us as close to that without overcoming that.

 

In a situation like a team sport, where you’ve got a whole bunch of people, what you’re going to find is that’s going to be extraordinarily difficult because each individual has a different set point. And so if you’ve got a whole team, first of all, they don’t have all the same training load because everybody’s going to have positional differences. Second of all, they’ve got different genetics, which makes them either more prone or less prone to injury. And so what you’ve got is you’ve got to really break it down to individualize the training and the performance based work for each individual athlete, if possible.”

 

How stiff is stiff enough? And I’d like to get you up your thoughts on that as well.

 

”Again, this comes down to what’s your performance? So if you’re in Rugby Union and you’re one of the big guys, and you just have to absorb a lot of force you don’t need to be extraordinarily stiff.  If you’ve got the big, huge guys, so in American football, it’s the lineman. So they’re big, huge linemen, these guys are like 6’6 about 110, 120 kilos. So they’re big. And what they’re doing is they’re absorbing force. I don’t need much stiffness in that athlete.

 

I like to talk to manual therapists, physical therapists, athletic therapists, who are hands-on, they’ll tell you that there’s two types of athletes. There’s the muscular athlete and then there’s the stiff athlete. And just by touching them they know what type of athlete.

 

I need stiffness for the people who are going to have high end speed, have to jump super high. Any of these ballistic movement performances, that’s where I need stiffness. And in that situation, what you want is you want the stiffness that’s necessary to perform the movement, but no more. It’s just like flexibility. I don’t want somebody to be so flexible that they’re now hyper lax, and they’re going to increase the risk for injury again. So injury rate and stiffness is a U shaped curve. So if you are very inflexible, there’s a high injury rate. If you are very, very flexible, there’s a high injury rate. And in between, you’re going to get into this kind of shallow area where you’re at the optimal flexibility or at the optimal stiffness, your injury rate is relatively low, your performance is relatively high.

 

How do I have a quantitative way to say this is it? What I would do, the best thing that we have found so far is to use stuff like counter movement jumps or other things, and look at the slopes of the eccentric impulse. So this is the rate of force development eccentrically. And if you’re going down and up and you can look and you’re seeing big changes in that slope, what that’s telling you is that if you’re increasing the slope, that means you’re getting stiffer. And as you get stiffer, you’re going to find that you’re going to get to a point where you’re going to get a non-contact muscle pull. That for you is now going to tell you where you should be. Again, what we don’t have yet in elite athletics, or especially in non elite athletics, is any type of quantitative measures that say, here’s us tracking it over time. Oh, look, you picked up an injury when you got to this point, this other athlete picked up an injury when they got even less of a slope change. So that means you’re more resilient. You can do more high stiffness work. This person’s less resilient. You can do less.

 

So what we do is we use injury history a lot of times. And when I get an athlete who’s got an injury history that’s very long, that’s got lots of non-contact muscle pulls, now what that’s going to do is that’s going to change how I’m going to train them. Because I don’t want you to be the fastest player on the team and play two matches over a season. I want you to be the top five fastest players on the team and play every match in the season. And so that’s where I’m going to shift the way that I’m going to train to try and maximize or optimize your performance.”

 

So in terms of individual differences, is there, is it a huge range?

 

”There’s a massive range. There’s going to be those two or three guys who’ve pulled their muscle every year. It’s like, oh my God. Yep, he yawned, he pulled a muscle, you know, it’s that kind of thing every time. And then there’s going to be people who they’re a little bit slower. They actually can accelerate a little bit better. So they’re better able to decelerate accelerate, but they’re really bad at their high end speed. Those people tend to be more resilient as far as these non-contact muscle pulls, because their muscle is going to overcome inertia. So your acceleration deceleration, that’s your muscle base. The people who are the fastest people at the top end speed, those are the ones and they have a really hard time slowing down and speeding up.

 

So, it’s your connective tissue that is going to allow you to continue and to move as high a speed as possible. So if you’re really good at high end speed, but not so good at acceleration deceleration, that’s going to tell me that you’re going to be much more likely to get a non-contact muscle pull. If you’re really good at acceleration deceleration, I’m going to guess that you’ve not had a lot of non-contact muscle pulls.”

 

A minute ago, you talked about flexibility and this U shaped curve. If people want to be at the bottom and want to make sure that they stay there in terms of building that flexibility, but not becoming hypermobile, what would be your recommendations?

 

”Yeah, so what we do is, for our flexibility, for our range of motion type of work, what we’re doing is we’re not doing any kind of static based stretching because that’s not ideal as far as how we’re activating the system.  There’s a bunch of physical properties that these tissues have, that tendon has specifically, but that matrix has in general. And those are these viscoelastic properties. So that means that the tendon is going to behave both like a liquid and like an elastic solid. And that’s really important for us as a performance measure, because the faster you move, the stiffer of viscoelastic surface becomes.

 

So if I’ve got a viscoelastic tissue, if I go fast, it becomes stiffer. So we can do these tests in our laboratory where we’ve got a machine that’s just going to pull and it can pull at different rates.  And what you can do is you can watch it and it pulls super fast. It’s going to break earlier, but it’s going to have really good stiffness in the tissue. If I pull it really slowly, it’s going to stretch a lot further and it’s not going to take as much force and it’s going to be much less stiff. So if I pull and I hold on a tissue, like a tendon, you get creep, which means I’ve pulled it and then it’s going to slowly come back down. And that’s fine and that’s what you get with static stretching. What we want to do that slightly different is we want to actually continue to maintain the load on the tendon while we’re getting this kind of creep. And that’s called stress relaxation instead of creep. The difference is that when we do stress relaxation, we’re using muscle contraction to continuously load the tendon.

 

When we’re doing creep, we just go into a position where the muscle tendon unit is longer, or we just hold it there. And eventually it slowly relaxes, but there’s no tension across it. And so the tension of the whole system goes down together. When you use a muscle contraction to do that, now what you’re doing is you’re allowing the tendon to continue to get a load across it. But because the tendon is slowly relaxing, the strong parts of the collagen are relaxing, now what you’re getting is you’re getting a signal from the muscle and a signal from the tendon that correspond to each other. The tendon feels load, the muscle is creating load. When we do a static stretch, what we’re getting is we’re getting a disparate signal from the two tissues. One, the tendon is under load but the muscle’s not under load. There’s no contractility, and so what you get is you get this almost counter-intuitive to the two sensors within our musculoskeletal system, the Golgi tendon organ, and the muscle spindle, those are changing in two different ways.

 

And so that’s potentially giving us mixed signals that could potentially increase injury rate. And the example I give is our NCAA athletes. So the athletes where you think, okay, if you were to think of an athlete who should have really stretchy tendons, you would think probably of gymnasts. And you would think that these gymnasts are really super flexible. Well, two years ago, 17 NCAA gymnast ruptured their Achilles tendon. And so it’s not about, and so they’ve done lots and lots of passive stretching. They’ve done lots of holds. A lot of coaches actually have them sleep in those little devices that hold the toe back so that they get more flexibility in the Achilles. And yet here they are rupturing their Achilles faster than any, or more than any other athlete group. And it’s likely because they’re doing that passive movement and that passive movement isn’t increasing flexibility. What it’s doing is it’s changing the Golgi tendon organ reflex. And so slowly over time, the Golgi tendon says, oh yeah, this kind of stretch on the tendon or this kind of load on the tendon is normal. So it doesn’t have that really quick reflex that’s going to assist you at protecting your musculoskeletal system.”

Top 5 Take Away Points:

 

  1. Risk: reward – a lot of performance is down to maximizing properties of the musculoskeletal system that actually puts you at an increased risk for injury
  2. Ligaments vs. Tendon – the stiffer your ligaments are the better; tendon is a variable mechanical tissue. That means that the stiffer your tendon is not always the best option
  3. Role of tendon- to protect the muscle from injury. From a standpoint of a performance person, it’s there to transmit force as quickly as possible
  4. Know your limits – you actually need to push yourself to the point where you get a non-contact muscle pull.
  5. Static vs Dynamic stretching- dynamic stretching is better as it applies a stretch to the tendon and continues to apply a load on the tendon.

 

Want more info on the stuff we have spoken about?  Be sure to visit:

 

Twitter:

@Musclescience

You may also like from PPP:

 

Episode 372 Jeremy Sheppard & Dana Agar Newman

Episode 367 Gareth Sandford

Episode 362 Matt Van Dyke

Episode 361 John Wagle

Episode 359 Damien Harper

Episode 331 Danny Lum

Episode 298 PJ Vazel

Episode 297 Cam Jose

Episode 295 Jonas Dodoo

Episode 292 Loren Landow

Episode 286 Stu McMillan

Episode 272 Hakan Anderrson

Episode 227, 55 JB Morin

Episode 217, 51 Derek Evely

Episode 212 Boo Schexnayder

Episode 207, 3 Mike Young

Episode 204, 64 James Wild

Episode 192 Sprint Masterclass

Episode 183 Derek Hansen

Episode 175 Jason Hettler

Episode 87 Dan Pfaff

Episode 55 Jonas Dodoo

Episode 15 Carl Valle

 

Hope you have found this article useful.

 

Remember:

  • If you’re not subscribed yet, click here to get free email updates, so we can stay in touch.
  • Share this post using the buttons on the top and bottom of the post. As one of this blog’s first readers, I’m not just hoping you’ll tell your friends about it. I’m counting on it.
  • Leave a comment, telling me where you’re struggling and how I can help

 

Since you’re here…
…we have a small favor to ask.  APA aim to bring you compelling content from the world of sports science and coaching.  We are devoted to making athletes fitter, faster and stronger so they can excel in sport. Please take a moment to share the articles on social media, engage the authors with questions and comments below, and link to articles when appropriate if you have a blog or participate on forums of related topics. — APA TEAM

 

=> Follow us on Facebook

=> Follow us on Instagram

=> Follow us on Twitter

The Language of Coaching

With the end of a third lock down in the UK behind us, we haven’t slowed down in our vision to be the Best Tennis S&C Team in the World.  We are committed to a weekly CPD session and last week Konrad gave us an exceptional presentation, the content of which we wanted to share with you! We welcome back APA coach Konrad McKenzie with a weekly guest post.

 

The Language of Coaching

 

Today, I wanted to talk about a book I read by Nick Winkleman. “The language of Coaching”. This book was great as I wanted to seek ways to “Lean out” coaching cues. This blog will in no way “scratch the surface” of the complexity around topics of attentional focus, skill acquisition and neuroscience. I will highlight areas which I thought were pertinent but I implore you to read the book. The areas I will dive into today will be:

  • 3P performance profile
  • Motor learning vs Motor Performance
  • Coaching and attentional focus
  • Analogies, Internal and External cueing
  • Constraints based/Tactile cues

 

The 3P Performance profile

 

3P performance profile are a series of questions, practitioners would ask when seeking to solve a movement issue. Position, Power and Pattern. Positional questions includes asking whether the subject has the prerequisite mobility and stability to perform the movement. Power is related to the required the strength and power capabilities. Pattern refers to the coordinative and skill acquisition. If you imagine our position and power relate to the car whereas the “Pattern refers to the driver.”

Before I start the blog I want to highlight a few key terms to get us all familiar with motor skill learning:

 

Motor skill learning refers to an adaptive process whereby short term changes in behaviour can be measured and observed during or immediately after a session.

 

Acquisition phase– The acquisition phase is the initial period of improvement. It covers the period of time from when the learner is unable to respond correctly without assistance through to when they are able to respond correctly without assistance. This can be broken down further into stages.

 

Retention Phase- is the Ultimate assessment of motor learning which takes place in the future and athlete is able to demonstrate a skill void of any coaching influence.

 

Motor learning vs Motor performance

 

I presented on this topic at work as I felt it was important. But I asked this question to my colleagues,

How many times have you witnessed an athlete’s temporary change in behaviour? Only to come back next week and feel like they have forgotten everything?

I received a few blank looks but after a warm smile, I knew we all have experienced this. It was a question asked in the book. This uncovers a disparity between Motor performance and motor learning.

Sometimes we pride ourselves on acute changes of behaviour (Behaviour in a skill acquisition sense). However, this is not always indicative of genuine motor learning. This is significant because a regression in motor performance is a sign that the athlete is either dependent on our coaching tactics or isn’t adapting to the learning environment that we have created.  So then begs the question, how do we know that learning is taking place? Well, one of the methods is “Silent Sets.” Put simply a coach may employ silence in the athlete’s sets and gauge whether learning has taken place.

 

Coaching and attentional focus

 

“Attention is the currency of learning where mental investments determine motor returns”

 

When cueing athletes or explaining drills we aim to capture, keep and direct attention. The effectiveness of a cue is anchored to the accuracy and vividness of the imagery it provokes. Accuracy in this case requires the cue to capture the most relevant features of the movement an accurate representation of the desired outcome. I personally think of this as a difference between a Shotgun and a Sniper. Really good coaches seem to be snipers. This then moves on to where we direct our attention. If we notice a technical error, logic would tell us (coach and athlete) to zoom in on that problem. However, this creates a “Zoom fallacy”. Where the more our cues zoom into the technical error, the harder it is to change. “The closer you get to an elephant, the harder it is to know you are looking at an elephant”

 

 

Analogies

 

An analogy is a comparison between one thing and another, typically used for the purposes of explaining, it does have an interesting effect on the brain. Evidence suggests that language can literally put motion on the mind, providing support that analogies may help an athlete understand an unfamiliar pattern by learning it in terms of a familiar one. As you will see, an analogy is a sort of mental molecule that helps us make meaning. Analogies power our minds, allowing us to use association and comparison to expand and refine both our knowledge of the world and the way we move through it. Take these two for example, in relation to acceleration.

 

(Accelerate like a plane taking off)                          

 

Internal/External cueing

Now, we understand the power of analogies we can move nicely to internal and external cueing. Internally focused cues draw attention to muscles and body parts. For example, extending a knee, firing a quad or squeezing a glute. Externally focused cues, on the other hand, draw attention to the environment around the body. For example, pushing the ground away or driving the body off the line. Look below for some examples of internal and external cues.

 

Internally focused cues
DB Bench press – “Extend your elbows faster”
Leg action acceleration- “punch your knees up & Forward”
Hip Hinge lowering phase- “Keep the bar close to your thighs”
Pull up “At the top of the pull, squeeze your shoulder blades down and back”
Externally focused cues
“Drive upward as if to shatter a pane of glass”
“Blast toward the finish”
“Hide your front pockets”
“At the top, bend the bar like an old school strong man”

 

From this we can see a nice differentiation, with the same exercises. Nick is in favour of externally Focussed cues, he believes they are “Stickier” (Sticks in the athlete’s mind).

Constraints based cues

 

This wasn’t mentioned so much in the book, however, I found it had relevance. Constraints based cues. I was searching online to find a “Sniper” definition and here is what I found:

The CLA articulates that through the interaction of different constraints – task, environment, and performer – a learner will self-organise in attempts to generate effective movement solutions. (Renshaw, Ian, Keith Davids, Elissa Phillips, and Hugo Kerherve, 2011).

So by changing parameters such as the task or environment we can find effective movement solutions with minimal talking. A slight caveat to this (and some anecdotal experiences) is that the body will ALWAYS solve a movement issue however:

“The assumption that the body will figure out the best way to do something is a big jump to make.”  – Chass pipit (Professional Baseball coach)

Often this is through compensatory mechanisms which are sometimes maladaptive. Just remember the good old strength and conditioning saying “Context is king.” However, it is safe to surmise that using a constraints led approach coupled with appropriately timed (and amount!) cueing could lead to optimal results.

Terminal vs Concurrent Feedback

 

Again, this did not have a major spotlight in the book but it has relevance. Terminal feedback refers to the feedback received after a movement is completed. Tasks which are acyclical in nature will lean towards terminal feedback. Concurrent feedback is experienced by the performer whilst completing the action, anyone wanting to know more on this should watch the video below.

 

 

This blog is in no way meant to replicate any parts of the book, for that matter is doesn’t even do it justice, full credit goes to Nick Winkleman for a stunning read. I wanted to conclude this blog by relaying the questions I ask myself when coaching athletes or anyone for that matter.

 

Could I of said it differently?

How can I have a leaner approach to cueing?

How do I assess genuine motor learning has taken place, in this instance?

 

Thanks for reading guys,

Konrad McKenzie

Strength and Conditioning coach.

Liked This Blog?

You might like other blogs on this topic from APA:

APA review of the Middlesex Students S&C conference 2014

The Dubious Rise of the Corrective Exercise ”Pseudo-Physio” Posing as a Trainer- My thoughts

as well as two recommended articles:

This article on weak Glutes during Squatting

And this one on Exercise Modifications 

 

Do you feel that this would be a perfect time to work on the weak links that you have been avoiding? The things that you know you should be doing that you keep putting off? Would you like us to help you with movement screening and an injury prevention program? Then click on the link below and let us help you!

? TRAIN WITH APA ?

Aspiring Pro Training Support Packages

 

 

Follow me on instagram @konrad_mcken

Follow Daz on instagram @apacoachdaz

 

Remember:
  • If you’re not subscribed yet, click here to get free email updates, so we can stay in touch.
  • Share this post using the buttons on the top and bottom of the post. As one of this blog’s first readers, I’m not just hoping you’ll tell your friends about it. I’m counting on it.
  • Leave a comment, telling me where you’re struggling and how I can help

 

Since you’re here…
…we have a small favor to ask.  APA aim to bring you compelling content from the world of sports science and coaching.  We are devoted to making athletes fitter, faster and stronger so they can excel in sport. Please take a moment to share the articles on social media, engage the authors with questions and comments below, and link to articles when appropriate if you have a blog or participate on forums of related topics. — APA TEAM

 

=> Follow us on Facebook

=> Follow us on Instagram

=> Follow us on Twitter

Are You Planning Your Rest Days?

It’s tournament season for a lot of junior tennis players.

That can only mean one thing….lots of competitions.

It’s not uncommon for junior tennis players to compete throughout the five weeks of the British summer.

As the owner of an S&C coaching company it is my job to make sure our most committed players are planning sensible tournament schedules which include:

✅ Rest days following tournaments

✅ A week off for a complete rest

✅ Training days or weeks to top up physical qualities

It’s a balance that needs input from all the team (player, parents, tennis coach and s&c coach).

As a general rule, I encourage players to have:

➡️ a “half day” off every week

➡️ a “full day” off every week

➡️ three to five days mini break every 6 weeks

➡️ complete week off every 12 weeks.

It isn’t always possible to do it by the book….but the further away you get from the textbook rules, the more at risk the player is from mental burnout, fatigue and injury.

To see the full post on this topic visit the Instagram carousel.

–>Follow @apacoachdaz?
–>Follow @apacoachdaz?
–>Follow @apacoachdaz?

Need some advice on how to schedule your summer tournament/training block?

We offer Training Packages which include a 4 week programme and individual S&C sessions (face to face or online).

If you would like a 4 week programme without coaching we can offer this for a one off payment of £45.

Note – 3 month packages can be purchased on the website.  For those wishing to purchase 1 month only, please contact APA owner Daz Drake to arrange invoicing.

Email me at daz@apacoaching.co.uk and let us help you get started.

 

Growth Mindset: Do you have it?

I’ve had the book ”Mindset” on my book shelf for a few years but I hadn’t got to it until now.

For those of you who know me, it might not come as a surprise to you that I’m passionate about Psychology.

A couple of books that I keep coming back to are:

  • The Chimp Paradox – Dr Steve Peters
  • The 5AM Club – Robin Shaarma
  • The Power of Now- Eckhart Tolle
  • The Motivation Manifesto – Brendon Burchard

I think I’ll be adding ”Mindset” by Carol Dweck to my go to list.

 

The Brain

For simplicity, we like to compartmentalize the brain into the ‘Ego’ and the ‘Human.’ In Carol’s book she never refers to the brain in this way, but rather refers to two different mindsets, ‘Growth’ and ‘Fixed.’  So I wouldn’t want to misunderstand her and go as far as to say that your Ego is your fixed mindset and the Human is the growth mindset, because this is neither implied or specifically stated.

 

I’d encourage you to do your own reading but if we do use these terms interchangeably we might find it helpful to compare the EGO DRIVES (Fixed) versus HUMAN DRIVES (Growth).

 

EGO DRIVES

  • Feel safe
  • Feel accepted
  • Feel comfortable (convenient)

 

HUMAN DRIVES

  • Personal freedom and independence
  • Self-direction
  • Growth (our potential, our highest self)

 

Your Ego is about our survival instincts, looking for threats and signs of danger, and taking every opportunity to keep us safe and secure.  In the modern world this can be seen as ‘rationalising’ when we justify inaction or poor performance with excuses to ‘protect ourselves,’ from reality.  Some of that security could come from the perception of having an ability in something that is seen as desirable by others (acceptance).

 

Carol describes a Fixed mindset as ”a belief in an ability or quality that cannot be increased, it’s a fixed prior ability.” (Nature).

 

Growth mindset ‘is a belief in the capacity for lifelong learning and brain development, and can be increased with purposeful engagement.” (Nurture).

 

People may start with different temperaments and different aptitudes, but it is clear that experience, training and personal effort take them the rest of the way.

 

The view you adopt for yourself profoundly affects the way you lead your life.

 

Believing that your qualities are carved in stone – the fixed mindset – creates an urgency to prove yourself over and over.  If you have only a certain amount of intelligence, a certain personality, and a certain moral character – well, then you’d better prove that you have a healthy dose of them.  It simply wouldn’t do to look or feel deficient in these most basic qualities.  Every situation calls for a confirmation of their intelligence, personality or character.

 

 

But with the Growth Mindset- the hand you’re dealt is just the starting point for development.  This growth mindset is based on the belief that your basic qualities are things you can cultivate through your efforts, your strategies and help from others.

 

How Do We Develop a Fixed Mindset? 

 

When people hold onto a fixed mindset, it is often for a reason.  At some point in their lives it served a good purpose for them.

 

The idea that they are worthy and will be loved is crucial for children, and – if a child is unsure about being valued or being loved- the fixed mindset appears to offer a simple, straightforward route to it.

 

 

When young children feel insecure about being accepted by their parents it causes them great anxiety.  They feel lost and alone in a complicated world.  Since they are a only a few years old, they cannot simply reject their parents and say, ”I think I’ll go it alone.”  They have to find a way to feel safe and to win their parents over.

 

Children do this by creating or imagining other ”selves.” ones that their parents might like better.  These new selves are what they think their parents are looking for and what may win them their parents’ acceptance.

The Problem with the Fixed Mindset

 

The problem is that this new self – this all-competent, strong, good self that they now try to be – is likely to be a fixed mindset self.  Over time, the fixed traits may come to be the person’s sense of who they are, and validating these traits may come to be the main source of their self-esteem.

 

What’s the Solution?

 

Mindset changes asks people to give this up.  It’s not easy to replace your fixed mindset with a mindset that tells you to embrace all the things that have felt threatening: challenge, struggle, criticism, setbacks.

 

 

There’s the concern you won’t be yourself anymore.  It my feel as though the fixed mindset gave you the ambition, your edge, your individuality.  Maybe you fear you’ll become a bland cog in the wheel like everyone else.  Ordinary.

 

But opening yourself up to growth makes you MORE yourself, not less.

 

Confidence & Expectations

 

When I took my qualification with the Academy of Peak Performance to become a Certified Peak Performance Coach  I learnt about expectations and confidence.

 

If someone has high expectations about their performance, you will likely hear them say things like ”I should have” e.g. I should beat this person, I should of passed that test.  There is a difference between wanting something to happen and expecting it to- it’s okay to want to win, but it’s more important to be able to deal with the fact that it might not happen.

 

If a person has an expectation and they fail to achieve the standard, they are likely to feel a negative emotional state (disappointment, frustration etc).

 

Negative emotional states will negatively impact performance, e.g., through poor concentration and increase in muscle tension.  Performing without expectations relies on the person not assigning a JUDGEMENT to the performance (it was good or bad).  By not assigning a judgment to the performance a negative emotion can be avoided.

 

Not having expectations does NOT mean that you don’t care, nor does it mean you are not trying.  It keeps you focused on the present.  It also helps with maintaining confidence as you are not beating yourself up for messing up, or not achieving something.

 

Now there are some aspects of performance where you can have expectations of yourself based on non negotiable aspects of performance such as being respectful to opponents, arriving on time, giving high effort.  But having high expectation of the performance OUTCOME is an unrealistic expectation.

 

As humans we aren’t designed to perform high level sports under pressure.  Under pressure a natural response for a human is for us to:

  • narrow our attention on danger
  • higher tension / less movement
  • increased heart rate

So don’t judge or beat yourself up when you respond in a ”normal” way….that’s the way we are made!

And on the flip side be really proud of yourself when you respond in an ”extraordinary” or more effective way.  It’s a very satisfying feeling to feel the fear and do it any way.

 

Any performance objectives need to be tough enough to challenge the person but not too tough to depress their motivation.  Emphasis on winning is okay when that is the objective, but if it is the focus of every session it can influence learning and motivation.

 

In terms of confidence, you should practice in a way that engenders confidence in the person.  A definition of self-confidence is how strongly you believe in your ability to do something.  The person needs to focus on (remember) good performances.  Some people allow the perceptions (and even their thoughts of how others think of them) to influence their confidence.  This is not helpful and they need to learn to make their own judgments about their ability and let go of unhelpful comments from significant others.

 

The following undermine confidence:

  • Doubts
  • Indecision
  • Lack of trust
  • Fear of failure
  • Impatience
  • Expectations
  • Frustrations and other negative emotions
  • Negative self talk
  • Personalising faults

We often hear coaches talk about the power of positive thinking.  POSITIVE THINKING is different from expectations!

Be positive in your ability, learn from mistakes and other opportunities that present themselves and don’t expect or be critical = higher self confidence.

On a final note, the person is not their performance – if self esteem shifts up with success and down with failure this is unhealthy and undermines more than just self confidence.

 

? TRAIN WITH APA ?

Aspiring Pro Training Support Packages

 

 

Follow me on instagram @apacoachdaz

Remember:
  • If you’re not subscribed yet, click here to get free email updates, so we can stay in touch.
  • Share this post using the buttons on the top and bottom of the post. As one of this blog’s first readers, I’m not just hoping you’ll tell your friends about it. I’m counting on it.
  • Leave a comment, telling me where you’re struggling and how I can help

Since you’re here…

…we have a small favor to ask.  APA aim to bring you compelling content from the world of sports science and coaching.  We are devoted to making athletes fitter, faster and stronger so they can excel in sport. Please take a moment to share the articles on social media, engage the authors with questions and comments below, and link to articles when appropriate if you have a blog or participate on forums of related topics. — APA TEAM

=> Follow us on Facebook

=> Follow us on Instagram

=> Follow us on Twitter

Sir Alex Ferguson: Never Give In

Sir Alex Ferguson: Never Give In

For someone who considers myself a great learner, and a passionate coach, I’m somewhat embarrassed to say that up until now I knew little of Sir Alex Ferguson’s past.   As an Arsenal fan in the 1990s I watched with envy how Manchester United would more often than not take the upper hand in the big games, and created somewhat of a fortress at Old Trafford.  There was an intimidation factor that you saw in the players (Roy Keane comes to mind) and it started with the Manager.

So it was a pleasant surprise to find out that a new documentary was recently released about Sir Alex Ferguson.  While recovering from a brain haemorrhage, Ferguson recounts details of his life and career to his son, including his legendary 26-year tenure as manager of Manchester United. This is a moving story about the bond between father and son, an exploration of leadership and mental toughness, and a celebration of one of football’s greatest careers.

Here was the dynamic young Glasgow socialist, who led a shipyard apprentices’ strike on Clydeside in 1961, then went into football, scored an unprecedented hat-trick for St Johnstone against Rangers at Ibrox, wound up playing for Rangers, then managing Aberdeen, then in 1986 was appointed manager of Manchester United and after a tricky start led them to all-conquering glory.

 

We are offered an intriguing “Rosebud” theory for the rage and passion that drove him. Ferguson was raised Protestant and his wife Cathy was Catholic; and on joining Glasgow’s famously Protestant Rangers FC as a player, Ferguson was sternly asked by one of the directors if he had got married in chapel. Meek for the one and only time in his life, Ferguson replied that it was in a register office – instead of telling him to mind his own business.
The
Rangers bigwig declared himself satisfied.

 

But in that grim sectarian atmosphere, an unpleasant atmosphere persisted around the question of loyalty, and Ferguson clearly never forgot the angry humiliation of appearing to be blamed for Rangers’ loss against Celtic in the 1969 Scottish Cup final. His anger resurfaces to almost Brian Clough levels as Aberdeen manager, when his team won what he saw as an undeserved victory in the 1983 Scottish Cup final against an under-par Rangers, and he let rip with a bizarre live TV touchline rant against his own side at the moment of victory.

Below are a few passages I took from the documentary.

It is clear that his mentality came from his working class background.  He lived in the shadow of the ship yard.  His father worked there for over 40 years.

”Me as a manager, I used to lie in bed thinking about themes that I could address the players with, that would make an impact on them.  I would talk about miners, ship yard workers, welders, tool makers, people who have come from poor backgrounds, and I used to ask them, what did your grandfather do? What about your Dad?  To get the feeling inside of them of what their grandfathers worked for, it’s part of them and they have to display that meaning.”

Taking away all the trophies I’ve won and all the great players I have worked with, it’s a fact of life that where we come from is important.  You come out with an identity, I came from Govan, I’m a Govan boy.

”Everyone has their own personality, some walk away from things, and some say ‘No, I’m not going to accept this.’  When you grow up in a place like Govan most people were fighting to get out of there.  Govan had the capitalist attitude to the working class, keep them down there, and I was lucky because the football was the saviour.  Through that I got all the breaks.  I progressed.  My Dad played a part in that.  He followed us everywhere and always encouraged us.  Clubs approached my Dad.  I wanted to play for Rangers FC but it was St Johnstone that signed me first.  My Dad wouldn’t let me play full-time, I had to finish my apprenticeship first.’

I served an apprenticeship as a tool maker in case I didn’t make it as a footballer.  I don’t think it did me any harm.  It helped me in understanding people.  The community.  The apprenticeship strike was great for me.  It wasn’t about you, it was about us, being part of a team.  Nothing is more important than someone who has had hard times but is prepared to not give into it.”

 

Sir Alex’s wife: ”He was upset and angry that Rangers turned their back on him.  But it made him determined as well, that he would go on and prove himself.”

”The thing that drove me was leaving Rangers, that spurred me.  I started to question the managers, their way of managing.  It gave me that impetus that I can do this job, I know I can do this job, simply because that’s my upbringing.  Don’t give in.”

”Regarding my health I’m not actually in control.  In the football world and at United I am in control of the situation.  It is vital because a player can’t do it himself, a player is only part of a team.  The manager is in control of all that destiny.  Dealing with the press, referees, rivals, I have to make decisions that are correct.  I was never a failure, I never looked back, because there was always tomorrow whether you lose or win.”

At Aberdeen, when interviewed by the press, ”Obviously I have my own ideas on standards, and through time this will come through to the players, fingers crossed.”

”Success was winning the league cup or the FA cup every six years.  The problem was a lot of those players couldn’t dream of winning the league.” (implying when Sir Alex started working with them they didn’t have the belief in themselves they could beat Rangers and Celtic).

Alex was desperate to beat Rangers and Celtic.  And Rangers was the first target.  ”The first time we played at Rangers we scrambled a draw in the last minute.  After the game all the players were all celebrating jumping up and down.  And I’m saying, wait a minute, what you all celebrating for, you’ve only drawn?!”

Gordan Strachan said after the match, ”We’ve all had bollockings off managers at previous clubs but this was an intensity that was not just about that game, it was everything, where do you want to go what do you want to do with your life.”

Alex said, ”Forget all the work we’ve been doing on passing the ball, and technical ability, if they’re not winners, it’s a waste of time anyway.  You’re trying to get that character instilled in the human beings you’re working with.  When you go on that pitch you can’t leave your personality in the dressing room.”

Gordan said ”there is something up here, not right, there is something inside this fella that is making him angry and driving him and, looking back, it’s like I’ve bumped into a wounded animal.”

”Rather than explain how you can bring a winning mentality to people, you have to produce a project that is working.  You have to earn the right to be an Aberdeen player.”

Gordan said, ”He put people under so much pressure to be successful.  Deep down inside of us there is a devil that drives us on.  For whatever reason, Alex could make that devil materialise for a game of football.  He brought the devil out of me.”

”If you get them young enough and breed the important values of what you are trying to achieve with them they will become that particular person that you were looking for.”

Asked by a broadcaster about the class of 1992 (Beckham, Giggs, Scoles, Nevilles, Butt), ”Do you have to treat them differently to the established stars? ”

”Absolutely, you have to be harder on them because they are facing for the first time in their lives media attention, and you don’t get any criticism from journalists when you are young, it’s all praise.  I think they realise that being strict on them is for their own good.”

 

”That fearsome character has been portrayed throughout my career, and absolutely, I may have gone a bit too far on some occasions but I don’t think there is anything wrong in losing your temper for the right reasons, if they didn’t meet your expectations in a game, because everything is built around the standards in training and the ambitions of the football club. Because my experience of human beings is they like to do things the easiest way.  The minute you accept a bad performance or a bad aspect of their technical training they will do it again.”

 

Ryan Giggs, ”He was always in control, you were never in any doubt who was the boss.”

Alex said, ”I could be ferocious in terms of my criticism after the games, sometimes I would gather them altogether or sometimes I wouldn’t say a word to them.  I would never make myself predictable.”

It wasn’t as if I was their best pal, but they always knew I would find a way to help them.  You have to know them all, all these different people, with all these different stories.”

”When I met Eric [Cantona] I said to myself, right, I am going to forget his past, I’m not going to mention any of his behaviour.  It didn’t matter, what mattered to me was what we could do to bring him into our fold and give him the opportunity to be himself.”

Ryan said, ”Eric was just treated differently.”

Cantona said, ”More than a manager he was somebody strong enough to deal with any kind of personality.  But, when somebody like Sir Alex Ferguson gives you the freedom you need to express yourself you have to deserve it and you know how lucky you are to have this freedom and it’s why I worked so hard and I tried so hard and give everything to him.

Sir Alex had this to say,”Psychology is someone else’s word, I call it management.”

Do you feel that this would be a perfect time to work on the weak links that you have been avoiding? The things that you know you should be doing that you keep putting off? Would you like us to help you with movement screening and an injury prevention program? Then click on the link below and let us help you!

? TRAIN WITH APA ?

Aspiring Pro Training Support Packages

 

 

Follow me on instagram @apacoachdaz

Remember:
  • If you’re not subscribed yet, click here to get free email updates, so we can stay in touch.
  • Share this post using the buttons on the top and bottom of the post. As one of this blog’s first readers, I’m not just hoping you’ll tell your friends about it. I’m counting on it.
  • Leave a comment, telling me where you’re struggling and how I can help

Since you’re here…

…we have a small favor to ask.  APA aim to bring you compelling content from the world of sports science and coaching.  We are devoted to making athletes fitter, faster and stronger so they can excel in sport. Please take a moment to share the articles on social media, engage the authors with questions and comments below, and link to articles when appropriate if you have a blog or participate on forums of related topics. — APA TEAM

=> Follow us on Facebook

=> Follow us on Instagram

=> Follow us on Twitter

The Future of Physical Conditioning for Tennis

A few weeks ago I took part in another webinar around physical conditioning for Tennis players – ”The Golden Circle of Physical Development- The Why, How & what.” The webinar was hosted by Dario Novak, and featured Ruben Neyens who spoke about young athletes at the U14 level.  The webinar explored ways to bridge the gap between sports science (Why & How) and the practical on-court implementation (What) of physical training.

 

–>Follow @darionovak_ph.d   (Dr. Dario Novak)

–>Follow @ruben.neyens        (Ruben Neyens)

 

I was interested to hear this coach speak as I was always interested in his exercise selection, and the drills he uses with his tennis players. Today I wanted to share a few of his insights that resonated with me from the talk and perhaps share some other pieces of information.

 

Firstly, this talk was intended for the development of 14U players, however, other age groups would benefit from these pearls of wisdom.

The talk built a case for the Golden circle, I believe the book it came from was “Start with why” In this case;

 

  1. Why = Reason and value of physical conditioning
  2. How = Method and plan
  3. What = Activity and coaching

 

Broken escalator problem

 

Unfortunately, I could not find the commercial on the internet. But, I was shown a clip of two people on an escalator, the escalator stopped working and rather than just walking the remainder of the journey, the users stood there in confusion. This led to some provocative and open ended questioning by Ruben.

 

“Do you the see the problem?”

 

“When you do find the problem, are you going to be the one that solves it?”

 

This boils down to a couple of key things. Understanding the demands of Tennis and the individual in front of you. With regards to the demands a colleague of mine referred to something called “performance backwards” which seemed to stick. This will lead us nicely on to the next topic.

 

 

Demands of Tennis (Reason & Value)

 

I am going to split this section up into two sections as the first section was interesting.

  1. General demands

Tennis (unless playing doubles) is an individual sport and also a fairly silent game. Well, what does this mean? It means that not only do players have to demonstrate problem solving abilities, they have to demonstrate high energy/intensity without the quarrying motivation from their coaches. Ruben honourably said as a young coach “He would shout at the players to augment energy within a session.”

 

This was interesting and reading some of Dan John’s work showing the importance of creating the right synergy between Physical tension, Heart rate and arousal level, an imbalance of this synergy can throw off performance.

 

The length of a Tennis game is often dictated by the score, highlighting its unpredictability. It was mentioned that Ruben tends to try and replicate this by creating some unpredictability in the length of his training sessions. I was scratching my head around this, in the real world this sounds like a logistical nightmare. However, I also know some coaches like to use “Trading conditioning”. This is creating a scenario where there is unpredictability how many repetitions are performed of a particular conditioning drill, athletes remain clueless and you keep performing the task until told to stop.

 

From a perception-action standpoint players are reacting to “visual cues” which I see Ruben complimenting, by using lights and various visual aids for his reactive based speed work.

 

  1. Physical demands

In this section I am not going to mention all of the physical demands I currently know, just the ones that stood out to me. Last year I wrote an article on “demands of the game” but I wanted to add to it by mentioning a few key points.

 

  • Average 3-5 changes of direction per point
  • Average 800 changes of direction per match

 

What I admired about this talk is Ruben is so honest with his mistakes, he mentioned that when he reflected on his programming he was training his players for long rallies (not the intention) which was not reflective of the game.

 

 

Stop start cycle

Tennis is characterised by what he called a “stop start cycle”. Where players have to start, move, hit & recover. Along with the locomotive demands players have to be able to orient their bodies well whilst maintaining balance, highlighting the need to control their bodies in order to hit the ball effectively.

 

 

Why do we need physical training?

 

So a question was asked. “Why do we need physical training on top of tennis training?” These four overarching topics were brought forward.

 

  • Fundamentals – Teaching fundamentals of good movement
  • Performance – Enhancing performance
  • Prevention – Injury prevention/keeping athletes healthy
  • Variation– Keeping training interesting and varied.

 

I don’t think I need to go into any of these topics in too much detail however, I quite liked the point he made about variation and providing a nice change (from tennis training) for young athletes.

How do you implement physical training

 

Building the Layers

 

Firstly, it’s determining what you want to work on, “what is my goal?” I particularly enjoyed this section because it succinctly connects the training puzzle. I have always believed that the art of programming is not the individual training units, rather how it fits together in the big picture you are trying to paint.

 

Coordination Speed Strength Endurance Mobility

 

At APA we refer to these fitness components as the 5 S’s- skill, speed, strength, stamina and suppleness.

 

It was mentioned that you may work on a number of these in a session however this is best delivered as a “starter” & a “main dish” where the main dish is the prolific quality and the “starter” may include other training qualities in smaller amounts. For example, the use of “Movement breaks” within a session.

 

From the qualities we are trying to develop, comes the delivery and the organisation of exercises, “Are we trying to learn, develop or perform the skill?”

 

Learn
Develop
Perform

 

This just follows a systematic progression of exercises. When we learn an exercise/skill we slow it down and reduce its complexity. As we develop a skill we may increase spatial and temporal pressure. Finally, there is performing the skill with added pressure, complexity and competition. But, the question is; “Does the skill survive?”

 

Types of physical training 

 

I am paraphrasing here but Ruben suggests that “The role of the physical trainer is to develop the physical qualities, not correct technique around tennis skills.”

 

This section refers to the degree of specificity. Is training, general, orientated, integrated or specific? Where orientated training may look like a footwork drill using a tennis ball “bounce and catch” to mimic the stop-start cycle or specific training where there is the use of a Racket and Tennis ball. An example of integrated training is using medicine balls throws preceding hitting ground strokes.

 

General
Orientated
Integrated
Specific

 

The 3-D model

 

 

This creates a 3-D model of training, and it is something I am going to reflect on in my training. Having drills where there is clearer system and intention on the type and intensity of exercises/drills, these can then be selected at certain times.

 

Learn Develop Perform
General Integrated Specific
Coordination Mobility Strength Endurance Speed

 

This was a great presentation with many more points however, I wanted to highlight the aforementioned points in particular. I hope you learn from the work of Ruben, I certainly did.

 

Do you feel that this would be a perfect time to work on the weak links that you have been avoiding? The things that you know you should be doing that you keep putting off? Would you like us to help you with movement screening and an injury prevention program? Then click on the link below and let us help you!

? TRAIN WITH APA ?

Aspiring Pro Training Support Packages

 

Follow me on instagram @konrad_mcken

Follow Daz on instagram @apacoachdaz

Remember:
  • If you’re not subscribed yet, click here to get free email updates, so we can stay in touch.
  • Share this post using the buttons on the top and bottom of the post. As one of this blog’s first readers, I’m not just hoping you’ll tell your friends about it. I’m counting on it.
  • Leave a comment, telling me where you’re struggling and how I can help

 

Since you’re here…

…we have a small favor to ask.  APA aim to bring you compelling content from the world of sports science and coaching.  We are devoted to making athletes fitter, faster and stronger so they can excel in sport. Please take a moment to share the articles on social media, engage the authors with questions and comments below, and link to articles when appropriate if you have a blog or participate on forums of related topics. — APA TEAM

 

=> Follow us on Facebook

=> Follow us on Instagram

=> Follow us on Twitter

Should We Treat All Children the Same?- Part 2

Hey Everyone.  My name is Daz, owner of Athletic Performance Academy and chances are you are reading this blog because you have an interest in the question, ‘should we treat all children the same?’

 

Please read Part 1 if you haven’t already.

 

One Size Fits All

 

In Part 1 I asked the question whether the mechanical model which ‘treats all children the same’ is part of the reason why some children seemingly fail in a system that is based on a ‘one size fits all approach.’  Do we just give our energy to the children who thrive in this environment, or do we need to change the environment, or at least give more opportunities to experience different environments, ones where more children actually want to learn in?

 

 

To answer this, this blog will firstly look at the CULTURE of our Academic institutions referring to what High Performance Systems in the world do, and also look at ‘Alternative Education programmes.’

 

I will then discuss COMMUNICATION methods to ensure that your coaching/teaching methods engage as many learners as possible by looking at Motivation and Skill variances in mixed ability groups and their individual needs.

Reforming Public Education

 

This section will propose some key ingredients to ensure the future success of Public Education in the 21 st century, based on some of the great work of the late Sir Ken Robinson, an international education advisor in the Arts who championed education reform.  He was passionate about creative and cultural education, with the goal to unlock and ignite the creative energy of people and organisations, which he felt was sadly lacking in the current education system.

 

 

Sir Ken has compelled us to think differently about capacity of the human mind- intelligence is diverse, dynamic and distinct.   Please watch How To Escape Education’s Death Valley which talks about the three features of High Performance Systems and thoughts on Alternative Education programmes.

 

Sir Ken highlighted that what all the high performing systems in the world do is currently what is not evident, sadly, across the systems in America:

 

  • They INDIVIDUALISE teaching and learning-  This system has to engage the student’s individuality, curiosity and creativity.  That’s how you get them to learn.
  • Attribute a very HIGH STATUS to the teaching profession.  You can’t improve education if you don’t pick GREAT people to teach and keep giving them constant support and professional development.
  • They DEVOLVE RESPONSIBILITY to the school level for getting the job done vs. command and control, and telling teachers and students what do to.  If you remove their discretion it stops working.

 

Education has been increasingly based on conformity and standardisation- and instead Sir Ken believes we need to go in the opposite direction, what Sir Ken means by changing paradigms!

 

One place to see evidence of this is in the ‘Alternative Education programmes’ that are designed to get kids back into education. They have certain common features.

 

  • They are very PERSONALISED
  • They have STRONG SUPPORT for the teachers
  • They have CLOSE LINKS WITH THE COMMUNITY and a broad and DIVERSE CURRICULUM
  • They often include programmes which involve students OUTSIDE SCHOOL as well as inside school

 

And they work! What’s interesting to Sir Ken is that these are called ‘alternative education,’ programmes. All the evidence from around the world is that if we all did that, there’d be no need for an alternative!

 

Daz comment: I can immediately see the value of applying those six principles into my APA company culture.

 

I have always recruited for CHARACTER first and credentials second.  It’s very important to recruit coaches who embody the APA values of Courage, Honesty, Respect, Enjoyment and Competitive Spirit.

I am often asked what I do for a living, I mostly say I’m a professional fitness trainer (to which the most common reply is, ‘you mean like a Personal Trainer?”) I personally don’t get offended by this but I know other professional coaches do.  Don’t get me wrong there are many exceptional Personal Trainers, but the simple reality is I know I have been to University for 5 years to get degrees in Exercise Science- this can’t be compared to a 12 week online course.  Having Professional status means I get paid to do this full-time for a living, something I never take for granted, since the vast majority of coaches are part-time or volunteers.

 

As far as my expectations of my coaches go, I agree with them what level of guidance they need.  APA can provide DONE FOR YOU templates when needed.  But to be honest, the roles I give them are largely self determined by their experience.  If they lack experience they will assist on sessions where someone else will be responsible for writing the programme.  By its very nature, the premise of the Lead coach is that I have determined that they have enough experience so I can ‘devolve responsibility.’  All my coaches tell me that they really enjoy this opportunity to have some autonomy over their training plans.

 

 

It goes without saying that the training plans are individualised, which I know a lot of people role their eyes at as everyone says their programmes are individualised.  In everyday life this simply means that I give the coach the license to adapt according to the needs of the individual or group, as long as it respects the principles of the APA method- a holistic approach to maximising athletic potential using the 5 S’s and 6 Stages of development.

 

Culture Reform

 

Up to 60% of children drop out of High school and up to 80% of native Americans (in some parts of the country in the USA).

 

But the drop out crisis is just the tip of the iceberg.  What it doesn’t count is the number of children who are in school, BUT ARE DISENGAGED from it, who DON’T ENJOY IT, who don’t get any real benefit from it.

 

Some people want to learn, and some don’t.  Every student who drops out of school has a reason for it which is rooted in their own biography.  They may find it boring, irrelevant, at odds with the life they are living outside of school/University.  These are trends but the stories are always unique.

 

It could be argued that education fails many people because it dislocates very many people from their natural talents.  Human resources or ‘talents’ are like natural resources- they don’t show up on the surface, they’re buried deep, you have to go looking for them and and CREATE THE CIRCUMSTANCES WHERE THEY SHOW THEMSELVES.

 

It’s about PASSION.  Passion is what excites our spirit and our energy.  And if you’re doing the thing that you love to do, that you’re good at, time takes a different course entirely, an hour feels like 5 minutes.  The reason so many people are opting out of education is because it doesn’t feed their energy, spirit or passion.

 

Create the Environment

 

In any environment, right beneath the surface are these seeds of possibility waiting for the right conditions to come about, and if the conditions are right, life is inevitable.

 

Take an area, a district, a school, you change the conditions, give people a different sense of possibility, a different set of expectations, a broader range of opportunities, you cherish and value the relationship between teachers and learners, you offer people the discretion to be creative and to innovate in what they do, and schools that were once bereft, spring to life!

 

Great Leaders know that leadership should not be about command and control.  The real role of leadership is CLIMATE control, creating a climate of possibility.  And if you do that, people will rise to it.

 

A case study: Sutton Tennis Academy

 

From February 2017 to Dec 2018 I was personally asked to go into Sutton Tennis Academy (STA) as part of APA’s contract with GLL which also owned Gosling Tennis Academy.  This has been one of the highlight’s of my professional career as a business owner and Head coach.

At the time I arrived, there was a culture change,  GLL had recently taken over, a national leisure centre operator.  The previous S&C department recently departed leaving behind an intern that wasn’t equipped to lead, and was being supported by the Gym Personal trainer at the time, who wasn’t previously involved in the S&C department.

 

I decided to make the intern and the PT interview for the S&C coach role, and I would bring in some additional interns.  It was a challenging process but in the end I had to let the intern go, and I chose the PT who I felt embodied the APA values most, and was going to be the best person for the job.

 

The greatest attribute I brought to the programme was a sense of possibility, a set of expectations based on the training plans I had been successfully implementing at other APA sites and supporting the coaches to be creative and innovative.  The environment changed, there was a sense of purpose, stability and energy.   I brought in another part-time coach and gave him and the PT a clear role so devolved responsibility which they both enjoyed.

 

It Matters How You Say It

 

Great coaching is as much about how you say it, as it is about what to say.  I have included an extract from two great blog posts written by former CEO of the IYCA, Brian Grasso, ”Cook Young Athletes Slow,” and ”How To Shape Speed Training- Part 2.”

”The ‘Lombardi-style’ coaching system doesn’t work. You can’t just bark orders and think that every young athlete you train is going to be listening. With coaching, one-size DOES NOT fit all. Just like physical ability, size, relative strength and potential, the way a young athlete needs to be communicated with is specific to that child or teen.  You cannot assume nor expect a given group of athletes, with their varying personalities and temperaments, to relate and respond to a singular style of coaching.

 

The aristocratic and authoritarian coaching style, long considered the most effective means of handling a group of athletes, is in actuality, a surefire way to negate the potential benefits of a lesson or training session.

 

From an ease of coaching perspective, it would be a wonderful scenario for us to only to work with those athletes whom were supremely motivated and exceptionally gifted, but in reality, this is seldom the case.

 

Now, I’m no fool. I’ve spent nearly 15 years in the trenches and know full well that when you have a group of kids (say 20 6 year olds) getting to know them well enough and being able to provide individual attention to them is challenging to say the least. But that doesn’t mean individualized communication isn’t possible. It just takes a system.

 

In any given group setting you have to accept the notion that your athletes will be divided in terms of both ability and motivation, and represent an eclectic cross-section of potential personalities. Over my years working with kids, I have found that every one of the young athletes I’ve trained fits somewhere into the following category:

 

1. High Motivation/High Skill
2. High Motivation/Low Skill
3. Low Motivation/High Skill
4. Low Motivation/Low Skill

 

Each one of the sub-classifications above represents an athlete in need of a particular coaching style in order to gain and retain your speed and movement shaping lessons optimally.

 

A brief overview of the template that shows how to communicate with each of these young athletes is as follows:

 

1. Delegate – Look to get this young athlete involved in the training and planning process. Have them lead warm-ups for the group. Have them create the warm-up within the boundaries of your system. If they are older, have them help you co-coach your younger groups. Keeping this young athlete engaged is a critical part of keeping them excited about the training process and provide a perfect communication scenario.

 

2. Guide – This young athlete doesn’t require more motivation – they need to enhance their skill. Rather than trying to incite them positively (because they’re already incited!) slow them down and guide them through the process of skill increase slowly. Breakdown complex exercises into specific stages and teach them in a whole-part-whole method. Communication will be automatically improved.

 

3. Inspire – This young athlete is great at everything, but lacks the necessary motivation to produce consistent effort (likely due to pressure from other coaches or their parents). Don’t ‘ride’ them or even ask them to work harder – they will tune you out quicker than you can say TRX! Instead, talk with them about what inspires them. What gets them excited? We all have a switch on the inside that can turn on when the situation is a quality and inspiring one for us. Find where there switch is and help them turn it on.

 

4. Direct – Don’t put this young athlete on the spot – even in a positive manner. They crave autonomy and the ability to just ‘blend in’. So give it to them. Provide instructions for the group at large and then quietly be sure that they know what is expected of them in the up-coming exercise or drill. Once they realize that your communication with them will be non-threatening, they will deem your training environment a ‘safe’ one and start to open up. That’s where the fun will start!”

 

Your first order of business then, is to adopt a dynamic coaching style which has wide spread appeal and attractiveness to any athlete – regardless of ability or disposition.

 

In doing so, your common denominator for coaching a diverse group of athletes must stem from use of the Pygmalion effect (often called the “teacher-expectancy effect”).

 

The Pygmalion effect infers that athletes will respond positively to the expectations placed upon them. This is a place in which may coaches and trainers fail to glean a positive response or change in there athletes when applying exercise stimulus alone as the sole variable used to elicit change or improvement.

 

You must quantify to your athletes what you expect their roles to be in the process of shaping there speed and movement skills. More over, your must consistently assert the specific skills you require them to develop at both the onset and conclusion of a given training session.

 

Herein lies the long-term approach to shaping movement and athleticism.

 

Each and every training session must have a plan for both execution, but be part of a long-range and dynamically conceived vision as to where you want your athletes to be at a certain point in time.

 

It is also critical that coaches and trainers assess the most viable ways of evoking an expectations-based philosophy with each group, in keeping with the varying personality, skill level and disposition of the individuals within that group.

 

It is equally important to understand the value of multidimensional instruction. Some athletes learn visually, some via verbal interaction and others still through kinesthetic means.

 

Each of these instruction strategies must be equated into the coaching puzzle in training sessions for true and lasting habitual change to occur in the quest to have your athletes maximise their potential.

 

In recap, the global behavior standards that must first be developed are as follows:

 

Understand that athletes have varying skills and motivations, and develop dynamic coaching strategies that will influence all of them.

 

Incorporate an expectation principle into each training session so as to have a measurable and tangible objective for your athletes to aspire.

 

Use verbal, visual and kinesthetic means of instruction to promote complete and full adherence.

 

Conclusions

 

Education is not a mechanical system.  It’s a human system.  It’s about people who either do want to learn, or don’t want to learn.  We need to find ways to unlock each individual’s natural talents and allow them to flourish.

 

One of the challenges is to innovate is hard because it means doing something that people don’t find easy; it means challenging what we take for granted.

 

Human communities depend on our diversity of talent, not a singular concept of ability.  And at the heart of the challenge is to reconstitute our sense of ability and intelligence.  It’s about passion to feed their energy, and spirit.

 

We have to go from an industrial mechanical method of education, which is based on linearity, and conformity and batching people.  We have to move to a model that is based on principles of agriculture.  We have to recognise that human flourishing is not a mechanical process; it’s an organic process and you cannot predict the outcome of human development.  All you can do, like a farmer, is create the conditions under which they begin to flourish.

 

It’s about customising your teaching/coaching to you circumstances and personalising education to the people you’re actually teaching.  Doing that is the answer to the future.

 

It’s about creating a movement in education in which people develop their own solutions, but with external support based on personalised curriculums.

 

Follow Daz on instagram @apacoachdaz

 

Remember:
  • If you’re not subscribed yet, click here to get free email updates, so we can stay in touch.
  • Share this post using the buttons on the top and bottom of the post. As one of this blog’s first readers, I’m not just hoping you’ll tell your friends about it. I’m counting on it.
  • Leave a comment, telling me where you’re struggling and how I can help

 

Since you’re here…

…we have a small favor to ask.  APA aim to bring you compelling content from the world of sports science and coaching.  We are devoted to making athletes fitter, faster and stronger so they can excel in sport. Please take a moment to share the articles on social media, engage the authors with questions and comments below, and link to articles when appropriate if you have a blog or participate on forums of related topics. — APA TEAM

 

=> Follow us on Facebook

=> Follow us on Instagram

=> Follow us on Twitter

Should We Treat All Children the Same?

Hey Everyone.  My name is Daz, owner of Athletic Performance Academy and chances are you are reading this blog because you have an interest in the question, ‘should we treat all children the same?’

 

Let me start off by saying that this is not a post examining some of the prominent issues of the day around gender equality, race hate or any other important issues of social inequality that plagues our world.  I certainly don’t feel I’m qualified in my coaching role to discuss these topics and I would respectfully say that this blog does not address these issues directly.  However, in my role as a coach which I define as ”someone who facilitates learning,” I feel that the notion of treating all children the same from a learning perspective warrants further inspection.

 

Role of the Coach

 

If you’re reading this blog as a coach, you may not identify yourself as a ‘facilitator of learning’ (which may sound more like a teacher) but I would encourage you to reflect on this. Ultimately whether you are helping athletes achieve championship winning performances on the sports field, or achieving Academic excellence in the classroom, the objective is the same- facilitate learning.

 

As I approach my 40th birthday and celebrate 20 years as a professional coach I’m reflecting on the apparent paradox that my coaching philosophy has been built on the idea of ‘conformity,’ which while it gives each child the exact same education and opportunity, may not actually be the best way to help my athletes learn!

 

Conformity is based on an industrial or mechanical model of education- a ‘fast food’ model where everything is standardised-  based on linearity, and gives every child the same educational experience.  This leads to a degree of certainty of what will come out at the other end (children educated to fulfill their role in the workplace). I too have largely coached this way for most of my career with a command and control style and a ‘mechanical formula’ for building athletes on my APA production line.  Like many things in life, this formulaic approach works better for some and less so for others.  But I’ve always tried to make it work for everyone, even if it sometimes feels like fitting a square peg in a round hole.

 

 

I recently spoke to two noteworthy teachers who I respect, one was one of my University Professors, who has recently retired and another is a former teacher of History in a well respected London independent school.  Both teachers shared the belief that you ‘can’t save all the whales,’ which basically means that there are some children/students who want to learn, and others who don’t.  Put your time into the ones who want to be there (and forget about the rest).  You can’t help them all.  I have always struggled with this concept, it just doesn’t seem to be the right thing to do.  I will acknowledge that teaching 30 children in a classroom will probably give you a different perspective, but I still feel that every child needs to be given an opportunity to realise their potential, even if it isn’t outwardly showing itself now. (For what it’s worth I did teach in Further Education for two years, teaching ”boring stuff” to 16-18 year olds, many who didn’t want to be there, so I do have some experience to base my comments on.)

 

My question is whether the mechanical model which ‘treats all children the same’ is part of the reason why some children seemingly fail in a system that is based on a ‘one size fits all approach.’  Do we just give our energy to the children who thrive in this environment, or do we need to change the environment, or at least give more opportunities to experience different environments, ones where more children actually want to learn in?

 

 

My definition of an APA coach is a ‘inspirational, honest, professional and courageous coach who is self-aware and coaches unconditionally to help their athletes maximise their potential.”

 

Many of my coaches have struggled with this concept of unconditional coaching; ”You mean you want me to give as much time and energy to the children who don’t want to be there, as the ones who do?” they would say.  ”You mean I need to spend as much time writing a plan for the children who have no talent, as the ones who clearly have a much better chance of making it?”

 

My concept of coaching unconditionally largely revolves around the concept that ‘no child gets left behind.’  You must meet them where they are at, maybe they are NOT READY to learn NOW, or perhaps they will never be ready to learn in the way you are presenting the information.  But never give up on them before they give up on themselves and always search for ways to ignite their fire for something.  Just find what they are currently willing/able to do and move them to the next step.  It may not be where they ‘need’ to be based on some expected or desired level of achievement, but if it is progress it still needs to be acknowledged and celebrated.

 

Reforming Public Education

 

In many conversations I have with parents I often draw parallels with the Academic journey to explain long-term athletic development.  Maybe you have too.  Furthermore, I certainly draw on my knowledge of teaching methods in the classroom to inform my coaching methods.  What is interesting is that there has been a call for education reform for many years now- the way we educate children in the classroom served us economically and culturally at the time of it’s creation- the mid 19th century.  But it no longer serves the children of the 21st century.

 

This blog will examine the current state of the education system, and some of the great work of the late Sir Ken Robinson, an international education advisor in the Arts who championed education reform.  He was passionate about creative and cultural education, with the goal to unlock and ignite the creative energy of people and organisations, which he felt was sadly lacking in the current education system.

 

 

My coaching philosophy has clearly been influenced by my understanding of how we learn in school, so I’d like to look at this first and then in a follow up blog, highlight some practical considerations for coaching practices I can employ in the next 20 years of my career.

 

Please stick with me, I hope you will see that much of what is good (and bad) in the classroom could be applied to the sports field.  Part 1 of this blog will address the challenges.  My follow up blog will address the possible solutions.

 

The Modern Challenge of Public Education

 

What follows is an overview of a talk by Sir Ken Robinson- Changing Education Paradigms

 

According to Sir Ken there are two reasons why we need to reform public education:

 

  1. ECONOMIC – how do we educate our children to take their place in the economies of the 21st century?
  2. CULTURAL – how do we educate our children so they have a sense of cultural identity, so we can pass on the ‘cultural genes’ of our communities, while we become part of the process of globalisation.

 

The problem is we are trying to meet the ‘future’ with what we did in the ‘past,’ and along the way we are alienating millions of kids who don’t see any purpose in going to school.  In the past, we were kept there with a story that if you worked hard and did well and got a college degree you would get a job.  Our kids don’t believe that (now)!  You’re better having a degree than not, but it’s not a guarantee anymore.  And particularly not if the route to it marginalises most of the things you think are important about YOURSELF.

 

The problem is the current system of education was designed and conceived and structured for a different age.  It was conceived in the INTELLECTUAL CULTURE of the ENLIGHTENMENT, and in the ECONOMIC circumstances of the INDUSTRIAL REVOLUTION.

 

At the time it was a revolutionary idea to provide formal public education that was:

 

  • Paid for by taxation
  • Compulsory to everyone
  • Free at the point of delivery

 

People at the time could not conceive that the working class were capable of learning to read and write but it was seen as necessary to insure the future growth of the industrial revolution.

 

[Unfortunately] the view of intelligence at the time was based on the enlightenment view of intelligence known as DEDUCTIVE REASONING– or ‘top-down logic’ which contrasts with inductive reasoning (“bottom-up logic”): in deductive reasoning, a conclusion is reached reductively by applying general rules which hold over the entirety of a range of topics, narrowing the range under consideration until only the conclusion(s) remains. In deductive reasoning there is no uncertainty.

 

In inductive reasoning, the conclusion is reached by generalizing or extrapolating from specific cases to general rules resulting in a conclusion that has uncertainty.

 

 

People who were good at deductive reasoning were come to be thought of as having Academic ability.  People who were not good at this were thought of as non Academic, or not smart!  The consequence of this way of thinking that runs deep in the gene pool of education (even until this day in my opinion) is that many brilliant people think they are not smart, because they’ve been judged against this particular view of the mind.

 

Don’t get me wrong- this approach has been great for some, who have wonderfully benefited from it but many have not.

 

I am a case in point.  I wasn’t really sure of what I was good at until I arrived at University.  My entire formal education at University was based on deductive reasoning and I learned fast that I was extremely good at it- synthesising large volumes of academic research into a succinct conclusion based on the available evidence.  There was something very predictable about this method of learning and I lapped it up- gaining almost exclusively A grades for the majority of my time there.  It gave me an enormous sense of confidence but was also in my opinion one of the main reasons I went on to have some of the most severe and almost life ending depression one can experience, something that I have been very public about, and occurred when I left the relative safety of the Academic environment.

 

 

In my opinion modern education still serves people who ultimately aspire to be guess what?   A University professor!  It’s designed for people who ‘LIVE IN THEIR HEAD.’   For as good as it was for my development as an Academic I felt completely unprepared for a life outside Academia, and I often wondered if the depression I felt once I left Academia was comparable to how many students feel when they are inside it and are trying to force themselves to endure a system rather than enjoy it.

 

Our children now are living in the most INTENSELY STIMULATING period in the history of the Earth.  They are being besieged with information that pulls their attention from every platform- computers, Iphones, TV channels and advertising; and we’re penalising them for getting distracted- from what? Boring stuff! (at school, for the most part!).

 

Perhaps there is a place for more AESTHETIC experiences within schools.  This is known as DIVERGENT thinking.

 

Divergent thinking is a thought process or method used to generate creative ideas by exploring many possible solutions. It typically occurs in a spontaneous, free-flowing, “non-linear” manner, such that many ideas are generated in an emergent cognitive fashion.

 

Education has been increasingly based on conformity and standardisation- and instead Sir Ken believes we need to go in the opposite direction, what Sir Ken means by changing paradigms!

 

 

One of the things that Sir Ken concluded was that most great learning happens in groups- collaboration is the stuff of growth.  I had to have a chuckle as being an academic type myself, I absolutely hated group work at University.   I knew that the conclusions to be drawn were self-evident in the research and having more people (who I perceived to be less capable than myself at deductive reasoning) would just slow the process down. I didn’t need to share ideas, the Academics of the time had already presented the most noteworthy findings and our job was simply to present them in a logical way to draw a natural conclusion.  Having someone repeatedly ask, ‘but what if?’ wasn’t going to get me a better grade!

 

But for many, let’s say, more creative divergent thinkers, group work is at the heart of human spirit.  Please watch How To Escape Education’s Death Valley which talks about the drop out crisis in USA and the three conditions in which humans flourish.

 

I’ll wrap up this blog with a summary of some of the points made.

Drop Out Crisis

 

Up to 60% of children drop out of High school and up to 80% of native Americans (in some parts of the country in the USA).

 

But the drop out crisis is just the tip of the iceberg.  What it doesn’t count is the number of children who are in school, BUT ARE DISENGAGED from it, who DON’T ENJOY IT, who don’t get any real benefit from it.

 

Some people want to learn, and some don’t.  Every student who drops out of school has a reason for it which is rooted in their own biography.  They may find it boring, irrelevant, at odds with the life they are living outside of school/University.  These are trends but the stories are always unique.

 

It could be argued that education fails many people because it dislocates very many people from their natural talents.  Human resources or ‘talents’ are like natural resources- they don’t show up on the surface, they’re buried deep, you have to go looking for them and and CREATE THE CIRCUMSTANCES WHERE THEY SHOW THEMSELVES.

 

It’s about PASSION.  Passion is what excites our spirit and our energy.  And if you’re doing the thing that you love to do, that you’re good at, time takes a different course entirely, an hour feels like 5 minutes.  The reason so many people are opting out of education is because it doesn’t feed their energy, spirit or passion.

 

There are three principles on which HUMAN LIFE FLOURISHES, and they are contradicted by the culture of education, under which most teachers have to labour and most students have to endure.  Sir Ken Robinson

 

These are:

 

  • Human beings are naturally DIVERSE– school system is not based on diversity but on conformity.  Teachers are asked to find out what kids can do across a very narrow spectrum of achievement (and mostly through standardisation and testing).  Kids prosper best with a broad curriculum that celebrates their various talents, not just a small range of them.

 

  • Humans are CURIOUS– if you can light the spark of curiosity of a child, they will learn without any further assistance very often.  Curiosity is the engine of achievement.  Teaching is a creative profession; teaching properly conceived, is not a DELIVERY SYSTEM.  You’re not there just to pass on received information.  Great teachers do that, but what great teachers also do is mentor, stimulate, provoke and engage.

 

  • Human life is inherently CREATIVE– we create our lives by the restless process of imagining alternatives and possibilities, and one of the roles of education is to awaken and develop these powers of creativity.

 

Instead, what we have is a culture of standardisation.  Part of the problem is that the dominant culture of education has come to focus on, not teaching and learning, but testing.  Now testing is important, but they should not be the dominant culture.  They should be diagnostic.  They should help and support learning.  It shouldn’t obstruct it, which of course it often does.  So in place of curiosity, what we have is a culture of compliance.

Conclusions

 

Education is not a mechanical system.  It’s a human system.  It’s about people who either do want to learn, or don’t want to learn.

 

Our education system has mined our minds in the same way we strip-mine the Earth for a particular commodity.  And for the future, it won’t serve us.

 

In the follow up part 2 I will outline how we can go from an industrial mechanical manufacturing model of education, based on linearity and conformity to a model that is based on principles of agriculture. We have to recognise that human flourishing is not a mechanical process, and you cannot predict the outcome of human development.  All you can do, like a farmer, is create the conditions under which they begin to flourish.

 

Follow Daz on instagram @apacoachdaz

 

Remember:
  • If you’re not subscribed yet, click here to get free email updates, so we can stay in touch.
  • Share this post using the buttons on the top and bottom of the post. As one of this blog’s first readers, I’m not just hoping you’ll tell your friends about it. I’m counting on it.
  • Leave a comment, telling me where you’re struggling and how I can help

 

Since you’re here…

…we have a small favor to ask.  APA aim to bring you compelling content from the world of sports science and coaching.  We are devoted to making athletes fitter, faster and stronger so they can excel in sport. Please take a moment to share the articles on social media, engage the authors with questions and comments below, and link to articles when appropriate if you have a blog or participate on forums of related topics. — APA TEAM

 

=> Follow us on Facebook

=> Follow us on Instagram

=> Follow us on Twitter